// A
JA \
\
A

) \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
JA \
)

A

yi

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

A Second-Order Satellite Orbit Theory, with Compact
Results in Cylindrical Coordinates

R. H. Gooding

Phil. Trans. R. Soc. Lond. A 1981 299, 425-474
doi: 10.1098/rsta.1981.0027

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1981 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;299/1451/425&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/299/1451/425.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 425 ]

A SECOND-ORDER SATELLITE ORBIT THEORY,
WITH COMPACT RESULTS IN
CYLINDRICAL COORDINATES

By R.H.GOODING
Royal Aircraft Establishment, Farnborough, Hampshire GU14 6 TD, U .K.

—%

_J < (Communicated by D. G. King-Hele, F.R.S. — Received 18 April 1980)
NP
S[- CONTENTS PAGE
e =
— 1. INTRODUCTION 426
E 8 1.1. Previous papers 426
o 1.2. The present paper 428
29 1.3. Notation 430
%9 2. BACKGROUND 431
85 e 2.1. Osculating elements 431
85, o 2.2. Lagrange’s planetary equations 432
='<Zz 2.3. Assumed potential 433
EE 2.4. Formulae connecting mean and true anomaly 434
3. MEAN ELEMENTS AND COORDINATES 435
3.1. Mean elements 435
3.2. Satellite position 435
3.3. The system of cylindrical coordinates 437
4. FIRST-ORDER ANALYSIS WITH LOW ECCENTRICITY 438
4.1. Variation of elements 438
4.2. Perturbations in cylindrical coordinates 440
5. PERTURBATIONS ASSOCIATED WITH THE SUN AND MooN 441
5.1. Application of J_, to solar radiation 442
5.2. Application of J_; to lunisolar gravity 442
~ 5.3. Application of J_, to parallactic term of lunar gravity 442
;5 > 5.4. Remark 442
2 E 6. FIRST-ORDER ANALYSIS WITH UNRESTRICTED ECCENTRICITY 443
O 6.1. Effect of the general zonal harmonic 443
anf@) 6.2, Perturbations in the elements due to J, alone 445
= 6.3. Perturbations in coordinates and assignment of k-constants 447
3% 7. J% PERTURBATIONS IN OSCULATING ELEMENTS FOR ORBITS OF LOW ECCENTRICITY 450
EI: 7.1. Perturbation in a (special method) 451
82 & 7.2. Perturbation in a (general method) 451
§c£ 7.3. Perturbation in i 452
EE Vol. 299. A 1451. 38 [Published 11 February 1981

CHJ
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MIKOIY
Www.jstor.org


http://rsta.royalsocietypublishing.org/

%

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

426 R.H.GOODING

7.4. Perturbation in Q

7.5. Perturbation in &

7.6. Perturbation in %

7.7. Perturbation in o+

7.8. Perturbation in n and in f n d¢

7.9. Perturbation in U

7.10. Comparisons with other authors’ results

8. J% PERTURBATIONS IN POSITION
8.1. Perturbation in r
8.2. Perturbation in u
8.3. Perturbations in 7, »’ and ¢

9. COMPLETE SECULAR AND LONG-PERIODIC PERTURBATIONS DUE TO J3

9.1. General remarks

9.2. Perturbation in a

9.3. Perturbation in e

9.4. Perturbation in ¢

9.5. Perturbation in 2

9.6. Perturbation in

9.7. Perturbation in M

10. CONCLUDING REMARKS

REFERENCES

First-order perturbations of a low-eccentricity satellite orbit due to the general harmonic
coefficient Jy,, of the Earth’s gravitational field are derived, and compactly expressed
(see equations (92)—(94)) in cylindrical polar coordinates. For the dominant harmonic
J,, the perturbations are taken to second order, and it is shown how formulae for the
second-order variation of the orbital elements depend on the definition of the mean
elements used for reference. With a particular choice of mean elements, the formulae
for perturbationsin cylindrical coordinates are again very compact (see equations (297),

(315) and (321)).

The general approach also yields first-order perturbations due to lunisolar gravity
and eclipse-free solar radiation. The paper finishes with a set of untruncated expressions
(valid for any eccentricity) for JZ secular and long-periodic perturbations.
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The description of the motion of an artificial satellite in the axisymmetric field due to the low-
degree zonal harmonics of the geopotential has been recognized as the ‘main problem’ in the
theory of satellite orbits, and many solutions have been published. The first R.A.E. paper (King-
Hele & Gilmore 1957) appeared in the same month as the first satellite and was succeeded by the
theory which Merson (1961) developed as a basis for the first proper orbit determination program
of the R.A.E. (Merson 1963 a). He took this theory as far as Jg (the coefficient of the zonal harmonic
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of degree 6) and then (Merson 1963 5) compared it with the theory of Kozai (1959), taken to J},
that pioneered the orbit analysis of the Smithsonian Astrophysical Observatory. Kozai’s paper
may beregarded as one of the two classic English-language papers — his approach was the solution
of Lagrange’s planetary equations and it is summarized in the book by Roy (1978). The other
classic paper was Brouwer’s (1959), published at the same time as Kozai’s; Brouwer’s approach
was the solution of Hamilton’s equations in Delaunay variables, after the method of von Zeipel
(1916, 1918), and an account is to be found in the book by Brouwer & Clemence (1961). One of
the first textbooks to give results (for J, only) was that of Sterne (1960). In a second theory, Merson
(1966) adopted the Kozai approach, extending it to cover any number of zonal harmonics, and
Gooding (1966) also obtained results for an arbitrary Ji. This second theory of Merson was
developed as the basis for a new orbit determination program, PROP (Gooding & Tayler 1968),
that was later improved (Gooding 1974) and is still in use.

The early papers normally provided long-term solutions of the ‘main problem’, i.e. gave
formulae for perturbations in mean orbital elements, to O(J%), where J; = O(J3) if 1 > 2, but
only took short-periodic perturbations to O(J,), neglecting them entirely for higher-order
harmonics. It was found by Vinti (1959, 1961, 1963, 1966) that, by use of spheroidal coordinates,
a complete solution could be found for a field including J, and J, but then the higher harmonics
had to be (rational) functions of J, and J,, with J, = (J3—J3)/Jp, J; = J4(J2—2J3)/J% and
(in general) Ji = olsin (1—1) y/siny, where o = J} and cosy = J, /2J}4, so the general problem
remained. (The complexity of this expression results from the continued use of a geopotential
expanded in spherical coordinates.)

The first paper to take short-periodic perturbations to O(J2), with J; and J, covered, seems
to have been that of Petty & Breakwell (1960). Kozai (1962), in a comprehensive development
to O(J%) for short-periodic perturbations and O(J3) for long-term perturbations, with J, Ji, J;
and J; covered but regarded as O(J}), changed his approach to the method of von Zeipel that
had been used by Brouwer. Aksnes (1970) followed Hori (1966) in basing his approach on the use of
Lie series; by reference to a suitable intermediate orbit, he thereby obtained results (to J, only)
that were essentially equivalent to Kozai’s but complete, much more compact and (unlike
Kozai’s) valid for zero eccentricity. More elementary (and hence more comprehensible) methods,
just based on the planetary equations of Lagrange, were adopted in a series of French papers; J3
short-periodic perturbations were given by Bretagnon (1972) and J3 long-term effects by Berger
(1972), none of the higher harmonics being covered.

Solution of the J, problem to yet a further order - short-periodic perturbations to O(J3) and
long-term effects to O(J3) —was achieved by Deprit & Rom (1970) and again by Kutuzov (1976),
in both cases by the application of computer algebra to a method based on Lie series. These
results cover J, only, however, and are only valid for moderately small values of the orbital
eccentricity, e, since they are expressed as truncated power series in e. Techniques based on
computer algebra are obviously very powerful, and two papers have recently been published
that give main-problem solutions involving vast numbers of terms. Berger & Walch (1977) cover
harmonics as far as J;; they only go to second order in short-periodic perturbations and (basically)
third order in long-term effects, but here third-order covers terms such as secular terms in J; J, /J,
that come from the treatment of fourth-order coupling between J; and J;, so that many combina-
tions occur. Kinoshita (1977) covers only the classical main-term harmonics, J,, J; and J,, but
goes to third order for short-periodic perturbations and to fourth order for long-term effects; he
adopts the perturbation method of Hori (1966) and, for satellite motion in a low-eccentricity

38-2
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428 R.H. GOODING

orbit (as evaluated by comparisons with numerically integrated ephemerides), claims an
accuracy better than 1 cm over a month.

In the papersso far referred to, attention was restricted to the zonal harmonics, but an excellent
early paper by Groves (1960) gave general formulae that also covered the tesseral harmonics—a
term now usually taken to include the sectorial harmonics. The standard reference, however,
specifying the effects of the general spherical harmonic coefficient, Jim, is the textbook of Kaula
(1966). Mention should also be made of the paper by Cook (1963) that gives a very comprehensive
review of the various general approaches to the main problem and of the early individual papers.

Much of the literature cited is extremely difficult to follow, even for a reader with considerable
experience of orbital analysis, mainly because of the extreme sophistication of the methods used,
but probably also because of unfamiliarity with the notation. Without understanding the methods
it is difficult to interpret the results — to pick out (say) a dominant set of terms for O(J%) perturba-
tions for a near-circular orbit becomes virtually impossible. This is particularly true if expansions
are made in terms of the quantity (1 —e¢?)%, as in Brouwer (1959), Kozai (1962) and Kinoshita
(1977), in each of which papers this quantity is denoted by #, and also effectively in Deprit &
Rom (1970) - the notation for (1 —¢?)% is ¢ in the present paper (A is also often used in celestial
mechanics), but expansions in ¢ are avoided.

1.2. The present paper

In many applications, involving satellites in orbits of low eccentricity, there are significant
perturbations of order Jim (assumed to cover the J; with 1 > 2) and J3, including terms of short
period, but terms in Jime and J e are entirely negligible. The significant terms may be obtained
quite easily, by starting with a solution of Lagrange’s planetary equations that is first-order
complete in J, and general (but truncated) in Jim, and then using the solution to J,e to build up
the J% terms. Furthermore, when an appropriate set of non-singular elements is used, the J%
results can be expressed very compactly. This is the approach of the present paper; the particular
non-singular elements are (as defined in §2.1) 4, 7, 2, £, 7 and U, and first-order short-periodic
perturbations in these elements, as given by equations (148)—(153), lead to the second-order
perturbations given in § 7.2-7.6 and 7.9.

This paper makes two principal contributions to the solution of the ‘main problem’, and
discusses various aspects of the philosophy of perturbation theory. The first contribution con-
cerns the derivation of formulae for perturbations in position, not merely orbital elements. If the
satellite’s position can be expressed by three suitable coordinates, then the number of perturbation
formulae required is immediately halved. (In certain applications, for example the processing of
Doppler data, formulae for three velocity components will also be required, but these can be
obtained from the position formulae by differentiation.) The reduction will be greater if the
formulae for position are simpler than those for certain of the elements, as is clear from Kozai’s
original paper (1959). By introducing r (geocentric distance) and « (argument of latitude),
Kozai was able to reduce long expressions for the (first-order) short-periodic perturbations in
the elements 4, ¢, @ and M into compact expressions for the perturbations in r and u; the expres-
sions for the perturbations in 7 and £2 are much shorter and he left these alone. In developing the
Kozai approach for use with PROP, Merson (1966) presented six perturbation formulae that are
very compact and completely free of singularity, and Gooding (1974) modified them slightly to
reduce nonlinear effects. :

However, the most natural development of the Kozai approach is by adding a third coordinate
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A SECOND-ORDER SATELLITE ORBIT THEORY 429

torand u, or rather to quantities 7" and «’ differing only slightly from r and . The third coordinate
is the cross-track displacement ¢, and the combination of 7', #” and ¢ amounts to a set of (geocentric)
cylindrical polar coordinates defined relative to a steadily rotating mean orbital plane. The
formulae for short-periodic perturbations in these coordinates constitute the main results of this
paper.

The paper’s other contribution to the main problem relates to the definition of ‘mean’ orbital
elements, and hence to the ‘mean orbital plane’ just referred to. The concept of a mean element
underlies all approaches to the main problem, but there is an ambiguity in every such element
in that the short-periodic perturbation (which, added to the mean element, gives the uniquely
defined osculating element) is arbitrary by any quantity that is free of short-periodic perturbation.
Thus if { stands for one of the orbital elements and A

Cosc = Z"‘ Sgs.p.:

thend{; ;. is a function of «, i.e. of orbital position, but is arbitrary to the extent of a quantity that
is a function of the mean elements.

Most papers on the main problem do not explain how their mean elements are defined, nor
indeed admit that there is any problem. This makes it difficult to compare the results of different
theories and to interpret the published elements of actual satellites. The present paper tackles the
problem head-on, for the first- and second-order effects of J,, by introducing arbitrary ‘con-
stants’, £, and £y, into formulae, so that general results can be given without a pre-empted
interpretation of particular mean elements. First-order such £, are introduced in § 6.2 (subsequent
to further discussion of mean elements in § 3.1), the most important being %, &, and &,,.

There are three possible criteria that can decide the choice of the various £, and which (tacitly
at least) are applied in the literature. First, they may be chosen to make the expressions for
perturbations in position as simple as possible; this is the philosophy adopted here. Secondly, they
may be chosen so that time averages of the short-periodic perturbations are strictly zero; this
amounts to making the k, zero if perturbations are expressed in terms of mean anomaly (M) rather
than true anomaly (v). Thirdly, the £, may be made zero when the perturbations are expressed
in terms of v; higher-order formulae will then be simpler than with the second choice.

This brings us to another important point. Early formulations of the short-periodic perturba-
tions (see, for example, Kozai 1959; Sterne 1960) were in terms of v (or u, where u —v = o, the
argument of perigee) and hence expressible in closed form. Later papers, and in particular those
based on computer algebra, switched to M, for reasons that are not entirely clear, the result being
expressions that are necessarily truncations of power series in e. The present paper, even though
it truncates before O(Jime) and O(J3e) terms, uses v (or rather «); there is no obvious reason why,
in terms of v, the main problem should not be solved to further order without a requirement for
infinite series in ¢ (but see also the remarks of Deprit & Rom (1970) and Hori & Kozai (1975) — the
difficulty lies in evaluating f vdM).

Section 9 of this paper is devoted to complete expressions for the J% long-term variation of the
orbital elements, divided naturally into secular and long-periodic perturbations. When O(J3¢)
effects can be neglected, no long-periodic perturbations arise (the meaning of ‘second-order’ in
connection with these perturbations is discussed), but (as already indicated) it makes sense to
take long-term perturbations to a higher order than short-periodic perturbations; unless the
satellite’s motion is only to be represented for a matter of, say, at most a revolution or two.
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1.3. Notation

semi-major axis

constant ‘mean a’ given by energy integral for zonal harmonics
direction cosines of Sun or Moon

normalized inclination function

quantities related to Af(7)

excursion from mean orbital plane

cosi, sin? in §8.3

spherical-harmonic coefficients

normalized versions of Com and Sum

cos (jv + 2w), sin (jv + 2w)

second-order component of ¢, made up of D, ¢, D, ¢, etc.
eccentricity

eccentric anomaly

sin27 .

inclination function

normalized inclination function

quantities related to FX (i)

t-3f
inclination
(—1)%

definite integrals of cos 2w, sin 2@, I,

un-normalized and normalized spherical-harmonic coefficients
zonal-harmonic coefficient

Bessel function

integration ‘constant’ associated with element ¢
second-order ‘constant’ associated with element ¢
indices associated with U and F functions

3, (Rp)*

mean K

first-order-definable quantity related to «’
first-order-definable quantity such that L = M+ gy
mean anomaly

mean motion

normalizing factor

parameter (semi-latus rectum) of ellipse
Legendre-polynomial function of sin

(1-et)t

geocentric radius vector

quantity closely related to r

set of cylindrical polar coordinates

Earth’s equatorial radius or distance of external body
rotation operators (matrices)

ratio of rates: Earth’s rotation to satellite’s nodal revolution
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t time
T affix for matrix transposition
u argument of latitude
u' quantity closely related to u
U sum of M and w
Unm representative term of gravitational potential
Uk, component of Uy,
v true anomaly
Vs v—M
V(v,e) function of v and e given by —4%e=2(v — M — 2¢sin v)
2,9, 2 geocentric inertial coordinates
o at
g geocentric latitude
0% in —u (exceptin §1.1)
8¢ short-periodic perturbation in ¢
Ag long-periodic component of variation in
'Y representative orbital element
Z mean {
&, 6 quantities such that K¢ and K2{, give first- and second-order short-periodic
perturbations
Vi esin w
0, ¢ angles such that (4, B, C) = (cos @ cos ¢, cos 0 sin ¢, sin 0)
t {—17in §8.3
A longitude
Anm longitude phase associated with Jym
Y Earth’s gravitational constant
Ha gravitational constant for a disturbing body
v sidereal angle
3 £Ccos w
p first-order-definable quantity such that L = p+n
o modified mean anomaly at epoch (except in §1.1)
v u —u
X In—0Q+v+Aim
v first-order-definable quantity such that ¢ = &+ Qcosi
2 argument of perigee
0 right ascension of the ascending node

2. BACKGROUND
2.1. Osculating elements

The standard osculating, i.e. instantaneously defined, elements of an elliptic orbit are a (semi-
major axis), e (eccentricity), 7 (inclination), £ (right ascension of the node), @ (argument of
perigee) and M (mean anomaly). Since ¢ is usually assumed to be small, we shall also employ the
non-singular elements £, 9 and U, defined by

£ =ccosw, (1)
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432 R.H.GOODING
7 = esinw (2)
and U=M+o. (3)

The mean motion, n, though defined by

n2a® = p, (4)
where g is the Earth’s gravitational constant, will often be treated as an element in its own right.
As indicated previously (Gooding 1966), the first-order perturbation analysis is facilitated by
introduction of some subsidiary quantities. Thus, we define , L and g by

¥ = &+ cosi, (5)
l.,=M+(1—e2)%§[r (6)
and p=L—n (7)

Because 7 and ¢ are not constant, proper integrated parameters i, L and p cannot be defined
but this is of little moment—it is legitimate (and extremely useful) to be able to work with
perturbations 8y, 8L and 3p, such that

3y = dw +302 cost, (8)
SL =M+ (1—e2)idy (9)
and dp =08L —fﬁn ds. (10)
Because M and 8y (though not L) are in general O(¢'), (3), (8) and (9) give
OL =3U+8Rcosi+ 4e*M + O(e?). (11)
We shall also use o, the ‘modified mean anomaly at epoch’ (where ¢ = 0), defined such that
¢
M=cr+f ndt, (12)
0
so that M= +n. (13)

For conciseness of formulae it is convenient to introduce quantities f; 4, p and ¢, where

S =sin%q, (14)
h=1-1f (15)
p=a(i-e) (16)
and g = (1—e?)k (17)

Finally, we denote true anomaly and argument of latitude by » and u respectively, so that

u=w+u. (18)

2.2. Lagrange’s planetary equations
Rates of change of osculating elements may be expressed exactly by Lagrange’s planetary
equations (Roy 1978; Brouwer & Clemence 1961; Sterne 1960), namely

. 200
d=h—am, (19)
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e\ ) 20)

=%§;—Z{ si%—%}, (21)

_Sg-z%—’aa{lj (22)

~ na? {g%l_j _%E%ij} (23)

and d'——;z-;l-é{:aalj+2a%g}. (24)

In (19)—(24), U is the potential (or disturbing function) assumed to be responsible for the varia-
tion of g, ¢, 7, 2, w and . We also have—and this is the whole point of the definitions given by

(6)=(7)- Y
= % de (25)

, 2 U
and p=——=—= (26)

In first-order analysis in which O(e) perturbations are ignored, we can express the Lagrangian
equations in the following approximate form:

nzaaal;T (27)

é = ;32—{(1 + 2¢cosv) % —%[a—{}, (28)

i = niﬁ{coti%—coseci%}, (29)

- oxcidl (30

o = s 5o+ 2sino 5| (31)

and p= —-%aalj. (32)

Two points are worth making in connection with (31). First, 09U /de does not mean the same thing
as it does in (23)-(25), since it is now relative to v held constant, rather than M held constant.
Secondly, the equation is presented with an e-factor, since this is how yr affects satellite position ;
if we were concerned with near-equatorial orbits we would associate a factor sinz with £ in the
same way. It is correct to keep ¢ in the denominator of the right-hand side of (28), on the other
hand; it always cancels out, since 09U /dv = 98U /0w + O(e).

2.3. Assumed potential

We take the gravitational potential of the Earth in the usual form as a doubly infinite sum of
spherical harmonics, of which the representative term may be expressed (Gooding 1966) as

Upn =2 ({—:)nle(sin £) (Cm €O A + Sy sin mA), (33)

39 Vol. 2g9. A
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where 7, # (geocentric latitude) and A (east longitude) are polar coordinates, R is the Earth’s mean
equatorial radius, and C,,, and S,,, are dimensionless coefficients. The indices I, m and n are
integers withn > 1,1 = nand 0 < m < L. Thus nis redundant, and does not normally appear in
the expression. Itisincluded here, however, to provide a useful generalization, in which (Gooding
1966) n can take negative values; we then have 1 = — (n+1). The generalization in no way
complicates the analysis, and permits the general formulae obtained to be applied at once to the
derivation of perturbations due to solar radiation and lunisolar gravity (see § 5).

Instead of Cypy and Syp, it is now customary to employ normalized equivalents, Cyp, and Sy,

defined bY Cnm = ]VlmC nm and Snm = ]vlm Sum: (34)

where Ny is the reciprocal of the normalizing factor. Also, we may define ‘polar equivalents’,
Jom> Jam and Ay, such that

Cim = Jam €0s Ay, and Sy = Jym sin Ay, (35)
with the equivalent normalized relations. The standard value for Mm, when m # 0, is given by
Pn=2(21+1) (1-m)!/(14+m)!, (36)

and when m = 0, i.e. for zonal harmonics, by (36) without the initial factor of 2. However, it has
traditionally been preferred, with the zonal harmonics, to use the coefficient J;, introduced in
§1; J, is defined as — C,, , (there being no S, ,), so we can conveniently identify J; with Jn, o bY
taking M, = — 1 instead of the standard value.

2.4. Formulae connecting mean and true anomaly

Formulae connecting M and v will be required and are collected here for reference. They are
valid for both osculating elements and the mean elements that are introduced in § 3.

The difference between M and v is expressed by the ‘equation of the centre’. The following is
an exact form of the equation, expressed as a double series of Bessel functions, as given by page 77
of Brouwer & Clemence (1961):

sin e . .
o= 42 M0 4 3 (L) 100 + 0] (37)
i=
This leads to
v = M+ 2esin M +2e%sin 2M — {5¢3(3sin M — 13sin 3M) + O(e?), (38)
to which the equivalent v-series result is
M = v—2e¢sinv+§e?sin 2v — §e3sin 3v + O(e?). (39)

From (38) we can derive formulae for sinv and cos v, namely

siny = sin M +esin 2M — Le2(7sin M — 9sin 3M) — 3e3(7sin 2M — 8sin4M ) + O(e)  (40)
and
cosv = cos M —e(1 —cos 2M) — e2(cos M — cos BM ) —4e3(cos 2M — cos 4 M) + O(e*).  (41)

Finally, we generalize (40) and (41) to O(e) expressions for the sine and cosine of (jv+kw).
Allowing T to denote either one of these functions, we have

T(jo + ko) = T(GM + ko) +je T{(j+1) M+ko} —je T{(j—1) M+ ko} + O(e2).  (42)

We can, of course, replace M by v, if desired, in the two je-terms. Also, by taking j = £, we can
derive the relations between the sines and cosines of ku and £U.
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3. MEAN ELEMENTS AND GOORDINATES
3.1. Mean elements

Let { be an osculating element, i.e. it stands for any one of q, ¢, 7, 2, w, o, M, £, 7 and U. Its
variation, due to the zonal harmonics, is made up of a long-term effect, not directly related to the
orbital period (i.e. independent of v and v), and a series of short-periodic terms (i.e. of period less
than the orbital period). The combination of the short-periodic terms is the short-periodic per-
turbation, 8¢, removal of which from { gives a mean element, £, which for most purposes (because
its variation can be plotted easily and accurately over long periods of time) is more useful than the
osculating element; thus ¢=Z+38¢L (43)

It is a little more complicated with element variation due to the tesseral harmonics, since this
variation depends on v, the sidereal angle, as we shall see in (63). Thus the terms independent of
M (equivalently  or v) are still of shortish period — they are known as m-daily terms—and are best
included in the appropriate 3. On the other hand, however, it is sometimes true that terms in
which both M and v appear vary only very slowly; this is the phenomenon of resonance, and it is
allowed for by shifting the relevant effects from 8¢ to €.

The variation of {in general has two components, both due just to the zonal harmonics, namely
a purely secular effect, which is zero for certain of the elements, and a long-periodic effect related
to the secular variation of w; in special cases, however, there will also be a component due to
resonance. The essential difference between the long-periodic component of ¢, A say, and the
short-periodic perturbations, 8, follows at once from (43); thus if f denotes the secular rate of
change of &, E=trlivag, (44)
and so A{is zero when ¢ = 0; 8§ cannot in general be zero at epoch, however, unless special epochs
(ascending nodes, for example) are chosen. This essential difference is often obscured by attempts
to remove Ag, as well as 8¢, from ¢, the objection to this being that the term in A{ of longest period
is then no longer bounded as this period tends to infinity. In particular, since @ vanishes at the
so-called critical inclinations (Allan 1970) (given, as far as J, is concerned, by f = 0.8), an entirely
specious singularity can be constructed in the various A{, of which more in §9.1.

Another way to look at this is that, in the integration of the planetary equations, A{ must be
obtained as a definite integral with lower limit ¢ = 0, whereas 3¢ can be expressed as an indefinite
integral. As with every indefinite integral, an arbitrary constant is associated with each 8¢, and
this may be chosen as desired. Asindicated in § 1.1, the choice may be unbiased, so as to make the
value of 8¢ zero when averaged with respect to ¢ or v (with different results unless the orbit is
circular), but a better idea is to chocse the constants so as to simplify the expressions for a suitable
set of derived quantities. This is the procedure adopted here, the ‘suitable derived quantities’
being the cylindrical polar coordinates that are introduced in § 3.3. The choice of constants is
considered explicitly in regard to J,-perturbations, first-order constants k, being introduced in
(138)—(146), and second-order constants &y, in (209), (216) and (260). Section 4.2 provides a
basis for inclusion of the effects due to other harmonics, in the first-order £,.

3.2. Satellite position
The significance of a set of mean elements, , is best understood from formulae for their direct
use (in conjunction with perturbation formulae) to generate a satellite’s position coordinates,
namely #, y and z.
39-2
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The standard algorithm for x, y and z, given the osculating elements a, e, i, 2, w and M, is as
follows:
(1) the eccentric anomaly, E, is found by solving Kepler’s equation

E—esinE = M, (45)

(ii) the true anomaly, v, is found from one of the two equivalent formulae (apart from an
ambiguity of quadrant in the first formula)

tanv = ¢sin £/(cos E—e¢) (46)

and tandv = [(1+¢) /(1 —¢)]? tan }E; (47)
(iii) u is obtained from (18), and r from either

r=p/(1+ecosv) (48)

or the equivalent formula r=a(l—¢coskE); (49)

(iv) x,yand zareobtained from the double coordinate transformation expressed by the matrix
formula
(x y 2)T=Ry(—L)R,(—17)(rcosu rsinu 0)T, (50)

where R () describes rotation about the jth axis, so that

1 0 0
R,(0) = [O cosf  sin 0] etc.
0 —sinf cosf
(T, in (50), denotes transposition).

There is, of course, a preliminary step given by
M = M,+nt, (51)

if the mean anomaly is only available at epoch (though appropriate for use at time #), and it may
be necessary to recover ¢, @ and M from non-singular elements £, 7 and U defined by equations
(1)~(3).

Now suppose the starting point is a set of mean elements at epoch, with long-term effects and
short-periodic perturbations known. Then each ¢ (osculating) can be obtained from (44) and (43)
before operating the algorithm, but an alternative procedure is more satisfactory since it requires
only four 3-expressions instead of six. In this procedure, as given by Kozai (1959), quantities 8r
and du, representing short-periodic perturbations in r and «, appear instead of 8a, Se, 5w and S M.
Steps (i)-(iii) of the standard algorithm now operate on the mean elements, leading in turn to
E, v, ii and 7, after which, as an additional part of step (iii), » and u are derived as 7+&r and
u +du respectively. The operation of step (iv) is exactly as before, 8/ and 82 being incorporated in
¢ and £ as the third and fourth §-expressions.

But Kozai’s modification of the standard algorithm for x, y and z can be extended, to its logical
conclusion, so that only three 3-expressions are required. Two of the perturbed quantities are
slightly modified forms of r and u, and may thus be conveniently written r’ and «’, while the third
represents the displacement of the satellite from its ‘mean orbital plane’, i.e. from a plane of
inclination 7 and nodal right-ascension 2. This displacement is in the ‘cross-track direction’
and may be conveniently denoted by ¢, thecugh we cannot distinguish the perturbation ¢ from ¢
itself, since the unperturbed value is zero. The positive direction for ¢ is such that the (positive)
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direction of orbital motion is given by the right-hand screw rule, the first-order formula for 8¢

being, in consequence,
8¢ = r(disinag —302sinicos ). (52)

This approach gives a complete first-order representation of 8; via 8¢, but only represents the
3£2sin 7 component of 32. The other component has to be incorporated with du, the combined
effect being 8«4’ and given to first order by

du’ = du+3L2 cosi. (53)

The operation of step (iv) is different with this approach, since 7 and 2, not i and £, must be
used in the coordinate transformation. Thus (50) is replaced by the formula

(x gy 2)T=Ry(—Q)R(—17)(r'cosu’ r'sinu’ ¢)T. (54)
Now r'24c% =12 (55)

since they are equal to the same thing, namely x2+y2+ 22 It is from (55) that the first-order
identity of 7" and r follows. In the analysis of J,-perturbations we find that, by appropriate
choice of k; and £, 8¢ can be kept te O(Jye, J3); thenr’ —rwill be O( J3¢2, J3e, J4) and hence (for
our purpose) entirely negligible.

3.3. The system of cylindrical coordinates

The quantities ', u” and ¢ form. a set of cylindrical polar coordinates relative to the mean orbital
plane that is defined by 7 and Q. (To a first approximation, 7 and @ are constant, so that the plane
has fixed inclination and rotates at a constant rate.) Relative to an instantaneous orientation of
this plane, the directions of increasing r’, increasing «’ and increasing ¢ are orthogonal. It is
tempting, therefore, to replace the angular quantity, «’, by a third linear quantity, / say, so as to
have a (rotating) Cartesian triad. The connecting relation is

8l = rou, (56)

and the rotating Cartesian system works very well for first-order perturbations. Itis unsatisfactory
when second-order perturbations are required, however, the difficulty being that/ (like 4, L and p,
but unlike #") is only defined differentially.

The first-order differential expressions (untruncated) for the cylindrical coordinates in terms
of the elements are (bars on the elements are omitted)

dr" = (r/a)8a—adecosv+ (a/q) edMsinv, (57)
du' = 8w +38L2cosi+ g 18 M+ (2/¢%) (Sesinv+ g1 edM cosv)
+ (¢/2¢?) [Sesin 2v + g3 M (3 + cos 2v)] (58)
and 8¢ = r(8isinu —802sini cosu). (59)

If O(e) terms can be ignored, the expressions simplify to

&' =da—a(8ecosv+edifsiny), (60)
du’ = 2(8esinv — edyr cosv) +8L (61)
and 8¢ = a(disinu —3L2sini cosu). (62)
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4. FIRST-ORDER ANALYSIS WITH LOW ECGCENTRIGITY

4.1. Variation of elements

We require the effects of C,,,, and S,,,; thus we have to integrate (27)—(32) with U given by the
Uum of (33) and with O(e) effects ignored.
To express Uy, in terms of the desired arguments, we invoke the formula

Pir(sin f) exp (im ) = X Fimy(i)expi{(1-2p) -+ m(2-)) (63)
p=

where i = (— 1) and which effectively (Allan 1965) defines the inclination functions F; Fjp,(i)

is a real function when I and m have the same parity; otherwise it is pure imaginary. The

F-functions may be generated by recurrence relations (Gooding 1971). The use of the index p in

(63) has become fairly standard, but it is more symmetric, and certainly more useful, to work

with an index k, such that (Gooding 1971)

k =1-2p. (64)
Now from (34) and (35) we have _
Cym cosmA + S, sinmA = Re Jyp My exp {im (A — A,)} (65)
and hence, by using (63), (33) may be written as
o (R\" - ! . .
Unm =2 (7) JimRe 3 [N Funo(() xpif(1 = 2p)u+m(@—v—2um)}].  (66)
pe
We introduce vy and y, where y=1in—u (67)
and X=3n—024+v+ Ay, (68)
since we can then write
expi{(l1—2p) u+m(Q—v—Ay,)} = FMexpi( —ky —my). (69)
Finally, we define F¥ (¢) by FE (1) = 59 Ny By (7), (70)
where p = (1 k) by (64); this makes FE (/) always real, and we may write
o {R\"™ - 1 I
U =5 (3) om 2 [0 cos (ky +mp)]. (1)

The summation on k is to be understood as only covering values with the same parity as 1. When
m = 0, equal and opposite values of k give the same contribution to U, so only non-negative
values need then be considered.

It is now natural to decompose U, into 2} UX , and convenient to write

Ul = £(2)" P cos iy + ), (12)

where F = J(R/a)™ FX,(i). (73)

We shall also require F’, defined as oF /01
To obtain the appropriate derivatives for substituting in the planetary equations we need

to observe that n41
a
(;) =14+ (n+1)ecosv+ O0(¢?). (74)
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Then d = 2nakFsin (ky +my), (75)

¢ = 3nF{(n+1+2Kk)sin (ky +my —») — (n+ 1 — 2k) sin (ky + my +2)}, (76)

i = nF coseci(k cosi —m) sin (ky +my), (77)

Q = nF’ coseci cos (ky +my), (78)

e = nF{(n+1+ 2k) cos (ky+my—v) + (n+ 1 — 2k) cos (ky + my +2)} (79)

and p = 2nF(n+1) cos (ky + my). (80)

We now obtain perturbations by integrating the above equations on the basis that the right-

hand sides are constant apart from linear variations in y, y and ». Furthermore, ¥ = — (i +®),

and we define K = k(1+a/a) (zk),' (81)
so that ky = —k’ii. Also, ¥ is v —ﬁ, and we define

s=(@-0)/(i+®) (=~ /A (82)

and m’ =m(1+w/7) (~m) (83)

so that m¥ = m’s#; clearly s is the ratio of the Earth’s rate of rotation (relative to the satellite’s
orbital plane) to the satellite’s rate of (nodal) revolution. The perturbations may be concisely
expressed as indefinite integrals, though (as indicated in §§1.2 and 3.1) the implied choice of
arbitrary constants is not always the best. Then

2akF
da = mCOS (k’y+mx), (84)
Sezlﬁ‘ ﬁﬂ_cos(kf}/+mx_v)_.._r_lﬂl{_cos(kfy_’_mx_’_v) (85)
2k —m's+1 k'—m’s—1 ’
. l:“\coseci(kcosz'—m)
3 = i~ cos (ky + my), (86)
50 = Lrosecig (87)
T kK —m's Y X)
__1f n+1+4+2k . B n+1-2k .
edyr ZF:——k’ —sritn (ky + my —v) to T oo (ky +my +v) (88)
_ 2F(n+1) .
and op = ~ W, Sin (ky +my). (89)

Formulae for perturbations in the other elements referred to in § 2.1, namely w, o, M, &, 3, U
and L, follow from the formulae above, the only difficulty being in the dependence of M, 83U and

8L on f dndt. Since dn = — 14(n/a) da, however, we have at once that
3kF
f&n dt = msm (ky +my). (90)

For the perturbation in L, given by 8L = 8p + f dn d¢, we then have

SL = (1{,_——*%,-5)-2{31{-2(% 1) (K’ — m's)} sin (ky +my). (91)
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The derivation of (84)—(89) is valid for general values of m’, k’ and s, the perturbations these
formulae express being short-periodic or m-daily, and the integration constants zero. Special
cases arise when a denominator is zero, or ‘close to zero’ according to some criterion. Then
bounded perturbations can only be ensured by returning to (75)—(80) and, as remarked in
§ 3.1, by evaluating definite integrals. The resulting perturbations are ‘long term”’ and so contri-
bute to A{, rather than 3¢, in the notation of §3.1. Clearly, the special cases for ¢ and i are
different from those for a, 7, 2 and p.

The most obvious special case is for k = m = 0. Then (75) and (77) give zero, integrating to
constant terms in da and 8¢ respectively, and we shall see in §4.2 that we do not want these
constants to be zero. Also (78) and (80) give ‘pure secular’ terms in £ and p respectively, i.e.
contribute to 2 and p; since we are working with ¢y and g, we do not directly encounter the
familiar secular perturbation in w that underlies the use of @ in (81)—(83), the basic effect of @
being covered by 5, as (5)—(7) indicate. The term in 5 is 22/ (n + 1) and this may be conventionally
included in 7, at the expense of losing the Kepler relation (4) between @ and 7.

Whenk = + 1, mstill being zero, special cases arise for one of the terms in each of (76) and (79),
these terms being proportional to cos @ and sin w respectively. The terms for k = 1 are just the
‘opposite pair’ of those for k = — 1, this being an illustration of the remark that, when m = 0, only
non-negative values of k need be retained. Integration gives long-periodic perturbations, con-
fined to terms in sin w and cos w as a result of our neglect of perturbations that are O(Jyp¢).

When m # 0, we can only get small denominators for special values of s. This is the classical
condition of resonance, and it occurs (for the appropriate elements) whenever k —ms is close
to 0, 1 or —1 (we must remember that only values ofk having the same parity as1are legitimate).
If k—ms ~ 0, the effect of resonance is a quasi-secular variation of semi-major axis (a), with a
consequent quasi-quadratic along-track variation (i.e. in L). If k—ms ~ +1, there is quasi-
secular variation of ¢ and w.

4.2. Perturbations in cylindrical coordinates

As explained in §3.3, we can derive first-order perturbations in the set of cylindrical polar
coordinates. Substituting (84)—(88) and (91) in (60)—(62), we get, for the effect of the Uk,
potential with O(e) terms neglected,
,_aF{2k—(n+1) (k' —m’s)}

T (k' —m's) {1 — (k' —m's)?%}
,  F{8k—2(n+1) (K —=m's) +k(k' —m's)?}

or

cos (ky +my), (92)

Su K —ms) (1= (kK —m's)7] sin (ky +my) (93)
acoseci .=, . . A .
and &:m{[F sin¢+ F(k cos¢—m)] cos (ky —y +my)

—[F"sini — F(k cosi —m)] cos (ky +7 +my)}. (94)

The formulae obviously break down when they involve zero denominators, arising from the
zero denominators in 8a, 3¢, etc. that were considered in §4.1. Valid formulae for the various
types of special case can always be obtained by returning to (75)—(80), before invoking (60)—(62).
For k = m = 0, the 8¢ and 8y terms of (60) contribute —aﬁ(n +1) to 87", i.e. a constant. This
can be eliminated by off-setting the ‘mean’ semi-major axis, @, by the same amount, effectively
adopting da = aF (n+1) as theintegral of ¢ = 0; for n = 2, this gives the e-independent part of the
‘preferred’ value of the constant k, which we meet in § 6 —see equations (138) and (160). Since
8p goes (via 8L in (61)) directly into du’, we can eliminate a secular term in «" by an off-set of
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ok (n+1) in the ‘mean mean motion’, 7, as already suggested in § 4.1. The effect of these two

offsets is that we require .
72a® = p{1 + F(n+1)} (95)

as the expression of Kepler’s third law. This is valid for first-order Jy-perturbations, but to go
beyond the first order, we should work with Urather than the unreal L. Thus if72is to stand for U,
it is less by £ cosi than the 7 of (95); the expression for Kepler’s third law is then, on using (78),

223 = p{1+ F(n+1) — 2F ' coti }. (96)

For n = 2, this gives the formula we shall meet as equation (190).

For k = 2, with m = 0 (not a zero-denominator case, but of interest notwithstanding), the
first term of (94) gives ;}a(ﬁ '+ 2F coti )sinu, and the same quantity comes from the second term
of (94) for k = — 2. But a constant component of 7 contributes a term in sin « to 8¢, according to
(62), so it is only necessary to take this constant (in ¢) as — %(ﬁ '+ oF coti), on evaluating for
k = 2, to eliminate the term in sinz (in ¢); for n = 2, this gives the ‘preferred’ value of the
constant k; which we meet in § 6-see equations (140) and (170).

5. PERTURBATIONS ASSOCIATED WITH THE SUN AND MoOON

As remarked in § 2.3, perturbations due to solar radiation (with eclipse absent) and lunisolar
gravity can be derived by appropriate interpretation of Jy-coefficients with negative n. It is
necessary to assume a fixed position for the external body in question, its coordinates being
specified by a distance R (the symbol ‘R’ has a new meaning now, having previously denoted
Earth radius) and direction cosines (4, B, C)—an ‘orbital system’ of axes is assumed here, with
first axis towards the satellite’s ascending node and third axis normal to the orbital plane, as
used by Gooding (1966) and Cook (1962).

A complication arises because, whichever external body is involved, the J, have to be inter-
preted as zonal harmonics relative to a plane which is not the Earth’s equator. The appropriate
plane may be thought of as a quasi-equator, however; itis the plane perpendicular to the direction
of the given external body, such that this direction is then quasi-north. Thus the general formulae
for perturbations 3a, etc. give expressions for 8;” and §£2’, rather than & and 8682, but the trans-
formation to & and 812 is straightforward (Gooding 1966).

There is a simpler approach to the derivation of the formulae for 87’, 5u’ and &¢, however. We
derive these initially as if the quasi-equator were the genuine equator, i.e. as if the disturbing
body were in the north-polar direction, and we observe that in the rotating Cartesian axes of
§3.3 the direction cosines of the polar direction are (sin¢ sinu, sin? cosu, cosi), whereas the
direction cosines of the disturbing body’s direction are (4 cosu+ Bsinu, — Asinu+ Bcosu, C).
(These axes may be described as ‘satellite axes’, being rotated through angle u, about the normal
to the orbital plane, from ‘orbital axes’.) We introduce the pair of polar angles, § and ¢,
respectively ‘latitude’ and ‘longitude’ relative to orbital axes, such that

(4, B,C) = (cos 0 cos ¢, cosOsin ¢, sinb). (97)

(In terms of the @ and " of § 8.3 of Gooding (1966), ¢ = o+ in and 6 = in —i'.) The direction
cosines of the disturbing body, i.e. of the quasi-polar direction, are now (cos® cos (u—¢),
—cos 0 sin (u — @), sin 0) relative to ‘satellite axes’. Hence the formulae for &7’, 8¢’ and 8¢ can be

40 Vol. 299. A
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obtained by simple replacement of sini sinu, siné cosu and cosi by cos 6 cos (u—¢), —cosf x
sin (z — ¢) and sin 0, respectively; since w is the value of u corresponding to perigee, the equivalent
replacement must be made for formulae involving w.

5.1. Application of J_, to solar radiation

In the absence of eclipse, the effects of solar radiation may be regarded as arising from a
constant force, with a potential corresponding to a J_, given by

J_y = S/n, (98)

where S is defined such that .S/R?is the force per unit mass acting on the satellite. The value of §
will of course vary greatly from one satellite to another.

When n = — 2, then1 = 1, so only two values of k arise, namely 1 and — 1; in fact we only need
consider k = 1, since the coefficients in the formulae can be doubled. We have (fork = 1), taking

N—2 = - 13 ~
F— — 3 4(a/R)sini, (99)

where R is the distance from the Sun.

5.2. Application of J_g to lunisolar gravity
The gravitational effect of a disturbing body being  differential’, we require n to be — 3, rather

than — 2, and take, as in Gooding (1966),

J—-3 = “/’Ld//", (100)

where g4 1s the product of the disturbing body’s mass and the constant of gravitation. Now
n = — 3 means that 1 = 2, so we have

F=1J 4(a/R)*h for k=0 (101)
and F=—3J,a/R3Pf for k=2 (102)

5.3. Application of J_, to parallactic term of lunar gravity

Whereas the ratio of lunar effects to solar effects is about 2.0 for the principal terms of the
respective potentials, for the next term —the parallactic term - the ratio exceeds 750. Thus we
only need be concerned with the Moon, when considering this (and any subsequent) term. We
have (with J_, = J )

F=3J (a/R)*(4~5f)sini for k=1 (103)
and F=—35J ,(aR)fsini for k=3 (104)
5.4, Remark

Neglect of the Moon’s motion is likely to be as serious as would be neglect of the parallactic
term. However, it is possible to allow for the effect of lunar motion quite easily, so far as the
principal term in the potential expansion is concerned, if it is assumed that this motion is uniform.
The underlying idea is that the effect of a J_4 field with moving axis is equivalent to the combina-
tion of a J_, field of fixed axis, namely the axis of the (revolutionary) motion, and a (rotating)
J_3 , field. To apply this idea to the motion of the Moon, we take the direction normal to the
lunar orbit as our fixed axis, with J_g = uy /2 and J 3 5 = py/4p, A_5 , being zero.
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Perturbations due to this J_g are dealt with asin § 5.2, with # and ¢ re-interpreted and numerical
coefficients multiplied by —0.5, but it is more tricky to cope with J_3 ,. In principle J_; ,
behaves like J; 5, but we have a field rotation rate of 13.18°/day (the lunar motion) instead of
361°/day.

6. FIRST-ORDER ANALYSIS WITH UNRESTRICTED ECCENTRICITY
6.1. Effect of the general zonal harmonic

In this section we no longer regard O(e) perturbations as negligible, but we stop the analysis
from becoming too complex by restricting it to zonal harmonics; however, the suffix n (of Jp) is
still allowed to be negative. We do the analysis by replacing ¢, as independent variable in
Lagrange’s planetary equations, by ». In this method » has to be interpreted as ‘ true anomaly in
an unperturbed orbit’, since the relation between » and ¢ that we require, to transform the
independent variable, is 5 = ngla/r) (105)

and this is only exact for an unperturbed orbit. The distinction need not concern us, however,
since the analysis is not yet proceeding beyond first order in the J-coefficients.
The planetary equations can now be written as follows:

&- ;;( W 50)- (107
g; ——r%::‘;c’ (cosiaa%—%), (108)
i—f:f%gc—i%?, (109)
&=t (110)
and %=—i—r;%—g. (111)

The expression we require for U is given by equation (20) of Gooding (1966) and isconveniently
denoted by UK. It is essentially Uk of §4.1, with m = 0, except that we can dispense with
negative values of k by doubling UX, when k > 0. We may in fact write

Uk = —'L;L(g)nffsinkicos ky, (112)
where Asinki = — (a/p)®uy F, (113)
u, being 1 if k = 0 and 2 if k # 0. In terms of the ‘normalized’ 4-functions of Gooding (1966),
we have
A R\"u, PE(0)
- Jn(p) h 2 AKG). (114)
We also require D, similarly related to the D-functions (Gooding 1966), and effectively defined by
Dsink-17 — — (&) Q{?
Dsin¥—1; = (p) Uy 57 - (115)

40-2
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444 R.H.GOODING

To evaluate the partial derivatives of UX with respect to 4, ¢, 7, 2, w and M, for insertion in the
planetary equations, U¥ being known as a function of 7, r and y (not p, since pnd is free of p), we
require the following results for a Kepler orbit:

o _r a_r__acosv O aesinv
a a Qe oM g
dy  sinv(24ecosv) Oy oy  a%yq
=T a—m_~1 and A= T

Evaluation of the derivatives being straightforward, though tedious, we eventually express the
planetary equations as follows:

da _ _%2ffsinki(‘?)n{2ksink'y+e[(n+ £ +K)sin (ky—0) — (n+ 1 —K) sin (ky +2)]},  (116)

gg - _ %gsinki(g)n—l{[(n +1 +k)§+k] sin (ky —v)
—[(n+1—k)§-k] sin (ky +9) +2eksinky}, (117)
g% = —Msink—licosi(‘;)n—lsinky, (118)
%2 = —Dsink—zi(‘g)n_lcosky, (119)
egd"—j =— %ﬁsinki(’g)n_l{[(n +1 +k)§ +k} cos (ky —v) + [(n+ 1 —k)g—k] cos (kV"'”)} (120)
and
3—5 =—2(n+1) qffsinﬂ(é)n_lcosk'y. (121)

For completeness we need the expression for dZ/dv. It is given by

df_dp 2 (122)
dv dv o
where the formula for ¢ was given at the beginning of this section.

The right-hand side of each of the above equations can be expressed in terms of v, since
v =4in—w—vandp/r = 1 +ecosu, so that (atleast in principle) we can obtain the perturbations
da, etc. by quadrature. When n > 0, there is no need to truncate at any power of ¢, since the right-
hand sides of the equations terminate as power series in ¢, i.e. they are polynomials. For n < 0
this is not so. To obtain integrable functions of v, repeated appeal is necessary to fundamental
trigonometrical identities such as

2cos A cos B = cos (4 + B) +cos (4 — B).

The general analysis will be taken no further, our real interest lying with J,.
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6.2. Perturbations in the elements due to J, alone

We require to integrate (116)—(121) for U and U3 given by (112). For k = 0, we have, for 4
and D defined by (114) and (115),

A=—1Kh and D = Kfcosi, (123)
where fand £ are given by (14) and (15), and K by
K = 34(R/p)% (124)

K, with this meaning, will be used throughout the rest of the paper. For k = 2, similarly, we have

A =31K and D = Kcosi. (125)
The first-order perturbations due to J, have been given by a number of authors, for example,
by Roy (1978), Brouwer & Clemence (1961) and Sterne (1960), but arerepeated here for complete-
ness—there is some redundancy in that expressions are given for quantities that are not inde-
pendent. Also, we introduce the constants k,, referred to in §§ 1.2 and 3.1.
As there are no long-periodic effects of first order, the variation of the mean elements is purely
secular, and the rates of change are as follows:

Q= —Kncost, (126)
v = Knh, (127)
p = 2Kngh, (128)
= 2Kn(1-5f), (129)
o = Kngh, (130)
M=n (131)
and U=n'+5. (132)

The ‘mean mean motion’, ', that appears in (131) and (132) is an absolute constant of the
motion that is related to the energy intergral, as explained by Merson (1961) and Gooding (1966)
(and used here in §7.1). It is given by

n'%a'3 = u, (133)

where the relation between @’ and (osculating) a is given b
g g y

a'1 =a 1 (1+2aU/p), (134)
for U = }udy(R?/73) {2 — 3f (1 —cos 2u)}. (135)
Thus a=a +Ka'qg%p/r)®(fcos2u+%h), (136)

this being an exact result. Warning: (131) is fortuitous in that for n = 2 two terms happen to
cancel; for general J,, we have an additional term in M, namely

—gF +[(2n—1)/2(n + 1)]5. (137)

It is also worth remarking that quantities on the right-hand sides of (126)-(130), as with
(138)—(146) following, should be regarded as mean, so that K, 7, etc. should really be written
throughout; being only first-order equations, however, they are actually correct as they stand.
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In the formulae for the short-periodic perturbations, da, etc., compactness is achieved by
writing G; for cos (jv + 2w) and S; for sin (jv + 2w). Also vy, is introduced as an abbreviation for
v — M; terms in v,, arise because the secular rates given by (126)—(130) really arise as d£/dv rather
than d¢/dt. The formulae are:

da = 7 Kaq*24(k,+fC,) +e[48hcosv + 36f (C, + Cy)]
+€2[24h cos 20 + 18f(2C, + C,) ]

+ ¢3[4h(8 cos v + cos 3v) + 3f (C_, + 3C, + 3C; + C;)]}, (138)

de = A K{48hcosv + 4f(3C,+ 7C;) + 6e(4hcos 2v + 10fCy + 3/ Cy + £,)
+ e2[4h(3 cos v + cos 3v) +£(3C_, + 33C, + 17C; + 3C5) ]}, (139)
81 = 5K sin 2¢{3(Cy + £;) +¢(3C; + Cy)}, (140)
802 = K cosi{ —6vy, + 3(S, + ko) —e(6sinv — 35, —S;)}, (141)

Y = 5 Ke 1 {48hsinv —4f (35, —7S;)

+ 6e[4h(2vy, + sin 20) 4 3f (25, +S,) + &)

+ e2[4h(9sinv +sin 3v) —f(3S_; — 215, — 115; - 35;)]}, (142)
8p = 3Kq{4hvy + 3f S, + 3k, + e(4hsinv + 3fS, +£S,)}, (143)
dw = #Ke1{48hsinv —4f(3S; — 7S;)

+6e[4(4 —5f) vy, + 4hsin 20— 2(2—51) S, +3fS, + £,]

+¢2[6(14 — 17f) sinv + 4hsin 3v — 3fS_; — 3(8 — 15f) S; — (8 — 19f) S5+ 3fS;]}, (144)
S0 = — A5 Ke1q{48hsinv —4f(3S; — 7S,)

+ 6e[ — 8hvy, + 4hsin 20 — 6fS, + 3f S, — k]

+¢2[ — 60k sin v + 4ksin 3v — f(3S_; + 518, + 135; — 35;)]} (145)
and
SM = — JsKe1¢{48hsinv — 41 (3S,—7S;) + 6¢(4hsin 20 + 3f S, + ky)
—e2[4h(3 sinv —sin 3v) + f(3S_; + 155, + S5 — 3S;)]}. (146)

The presence of the g-factor in (145) and (146) makes a simple complete expression for $U
impossible; complete expressions for 34 and 8y are simple enough, however, but will not be given
in this paper.

We now truncate the short-periodic perturbations to O(e), to obtain expressions that we
verify and use in § 7. For each element { we express 3¢ by writing

8¢ = Kg (147)

and we drop e,, ¥y, py, @1, 07 and M, in favour of £, 7,, U, and n, —the reason for having n, as
well as a, will become apparent. The expressions are:

a, = }a{2(k,+fcos 2i) + &[4k cos + 3f cos (1 + @) + 3f cos (2a + )]}, (148)
iy = 4% sin 2i{8(cos 2 + k;) +&[3 cos (# + @) + cos (2a + )]}, (149)
0, = }cosi{3 (sin 2u + ky) —£[18sin7— 3 sin (Z+ w) —sin (24 +0)]}, (150)

£, = #1{2[8(4h +F) cos i + Tf cos 3i]
+3¢[6(1 —f) cos (Z+7) —2(1 —5f) cos (2u+@) + 3fcos (3u+7) +k]}, (151)
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7 = 24{2[3(4h —F) sin@t + 7fsin 37 ]
+3¢[2(1 = 3f) sin (@ + ) — 2(1 — 5f) sin (22 + @) + 3fsin (3 +7) +4,]},  (152)
U, = —34{6(2—5f)sin 2a — £[6(26 — 33f) sin7
—3(4—9f)sin (#+ @) — (4—17f) sin (22 + )]} (153)
and ny = —3a{2(k,, +fcos 2@) + &[4k cos v + 3f cos (@ + @) + 3f cos (2 +7)]}. (154)

(Important: in the untruncated expression for 8z, corresponding to (138) for da, the factor ¢~2
appears and, in particular, acts on £,.) The coefficient of sin# in (150) is three times as large as
in (141), it will be noted. The difference is due to the e-term in (39), which comes in when v, in
(141) is expanded.

The quantity 7 that appears in (154) is a mean element that, like all the mean elements, is
arbitrary to the extent of a constant, namely the constant £,,. In view of (131), it might seem
natural just to take i = n’, since then# = A, but alternative assumptions may be preferable, and
will be considered in the next section.

Since (151) and (152) are equivalent to truncated versions of (139) and (144), we must have

ky = kgcosw 4k, sinw (155)
and k, = —kgsinw+ £, cos w. (156)
(Also ky, k, and k, are equal to &, + 4(1 —f) ko, k, — ky and k, — 2k, respectively, but £, £, and
k, will not be used again.) It is because of the e~'-factor in (144) that the non-singular £, and 7,
should be used instead of ¢, and w,, but @ in (129) is free of this factor —in other words, @ only
has an O(Ke) effect, apart from its action in combination with »’ in (132). It follows that the
most satisfactory way to generate (osculating) ¢ and w from (mean at epoch) ¢, and @, is by com-
bining formulae for @, £; and 7,, such that

£ = &,cos (W, + wt) + K&, (157)
and 7 = éysin (@, + wt) + Ky, (158)

from which ¢ and w follow by inversion of (1) and (2).

6.3. Perturbations in coordinates and assignment of k-constants

We want simple formulae for 71, u; (or /;, as given by (56), since we are only working to first
order) and ¢,, these quantities being defined by an extension of the notation introduced in (147).
Now &7’ is given by (57), where 8a, 8¢ and 3M are given by (138), (139) and (146). Evaluation
gives
r1 = 2a{f7?cos 2+ he?[2 — (7/p) (5 —cos 20)] — 6(7/p) (h+ 2 fe? cos 2w — k,)
+32cos v(4h + 3f cos 2w — k,) —2esin9(3fsin 20 + ky,)}.  (159)

Clearly, the simplest formula results from taking

ko = h+3fé2cos 2w, (160)
k, = 4h + 3fcos 2w (161)
and ky = —3fsin 2w, (162)
since we then get ry = Ya{fq?cos 2+ he?[2 — (7/p) (5 —cos 20)]}. (163)
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For uj and ¢; we get terms involving vy, (= v — M), and it is convenient to use the function of v

and ¢ defined by
V(v,e) = —%e2(v — M — 2esinv), (164)

re. V(v,e) = sin20+4 O(e), by (39). Then u; is given by (58), where 8¢, 82, dw and 8 are given
by (139), (141), (144) and (146). Evaluation gives

uy = 5{f[sin 2& + 4esin (i + )] + 2k(6/7?) [4(3 — 4¢2) sin T —esin 20— 3¢g2 V (v, ¢)]
+3(3fsin 2w +k,) + 6(1 —f) ko — 367 2sinv(2 + & cos ) (4h + 3f cos 2w — k,,)
— 3¢ (1 +ecost)?(3fsin 20 + kpy) }. (165)
This has been expressed so as to suit k£, and £, as given by (161) and (162); clearly we also want
ko =0 (166)
and k, = — 3fsin 2w, (167)
since (165) then simplifies to
uy = 15{f[sin 2% + 4¢sin (i + @) ] + 2/k(¢/7?) [4(3 — 4¢2) sin T —&sin 20— $eg 2V (7,)]}. (168)

Finally, ¢, is given by (59), where i and 82 are given by (140) and (141), so that evaluation
gives
¢, = rsin 2i{¢[2sin (#+0) — 3sinw — 2 V(7,¢) cosa] —3[(1 —k;) sin@ + ko cos@t]}.  (169)

By taking k, =1 (170)
with (166), we obtain the simple formula
¢, = %resin 2i{2sin (4 +0) — 3sinw —§e V(7,¢) cosu}. (171)

Equations (163), (168) and (171) give untruncated first-order expressions for the short-
periodic perturbations in coordinates. If O(¢2) terms can be neglected they reduce simply to

= }af cos 2i, (172)
uy = Lz{fs1n2u+4e[6/z'smv+fs1n (w+w)]} (173)
and ¢, = $résin 27[2sin (¥ +7) — 3sin@]. (174)

Instead of u{, we may use /;, defined in accordance with (56), to get three expressions that are
dimensionally compatible, since the analysis here is only first order. Thus (173) gives

Iy = Fr{fsin 2@ + 4é[6ksin 7+ fsin (7 +)]}. (175)

Equations (160), (161), (170), (166), (167) and (162) give ‘ preferred values’ for k,, £,, k;, ko, %,
and k, respectively - they will be referred to as such in the remainder of the paper. From (1) and
(2) we get, equivalent to (161) and (167),

ke = (4h+3f) cos @ (176)
and k, = (4h—3f) sin®. ' (177)

Preferred values have thus been given for all the constants except £,,, introduced in (154). The
value of £,, depends on whether or not it is regarded as essential to preserve the familiar Kepler-
third-law relation, as already discussed in § 4.2. If we do want to preserve this relation, then it
follows at once from (148) and (154) that we must set &, = k,. If we want to assign k, and %,
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independently, on the other hand, then the Kepler relation must be replaced by the more

general formula 2238 = p[1 — 3 Kg-2(k, —k,)]- (178)

It has been remarked that ‘it may seem natural just to take 7 = n"’ (since n’ = M), and it
follows from (136) and (138) that for a = &/,

k, = 3A(2 +362) + 3 Fe2 cos 26, o (179)

whence (for 77 = n') k, = $h(2 +3¢2) + 3 fe? cos 2m. (180)
But the preferred value of &, is given by (160), corresponding to an & such that

a = a —3Kahg—2(1—3¢?). (181)

In view of this it would be sensible practice to combine the £, given by (160) with the &, given by

(180), such that (178) gives 28 = pf1 — Khg-2(1—32)). (182)

Unfortunately, the commonly used ‘ Kozai semi-major axis’ (from its use by Kozai (1959)) differs

slightly from the ‘preferred’ g, since it is equivalent to the k, given by

ko = $h(2 + 322+ %) +3f¢2cos 2@, (183)

combining which with the £, given by (180) gives Kozai’s version of the Kepler third law, namely

m2ad = u(1— Kgh). (184)

The semi-major axis of the Brouwer (1959) theory, on the other hand, is our a’, with k, given by
(179). Finally, an unbiased (with respect to ¢) mean semi-major axis is given by

k, = (2 + 322 —273) + 3 fe? cos 2w, (185)

and this is the £, that is effectively used by Berger & Walch (1977) and Kinoshita (1977). It will
be observed that the ‘ f~component’ of k, is the same in all four expressions given, namely (160),
(179), (183) and (185); as we shall see in § 9.2, this is essential if there is to be no second-order
long-periodic variation in the semi-major axis—we need the f~component of k,, to be specifically
as given by (180) for 7 to be constant enough to induce a purely secular effect in M.

In proceeding with the development of second-order e-free terms, however, there is a good
reason for not using the value of £,, given by (180) (such that 7 = »’). In fact we want

i=U (=n+,by (132)), (186)

the significance of this value being that § 7 derives the ¢-free J3 terms on the assumption that the

relation
2ﬁj(cos2l7,sin2l7)dt== (sin2 T, —cos2T) (187)

has been used in the first-order analysis. Since @ is given by (129), and the general relation
connecting 7, k, and n’, if we neglect O(¢2) terms, is

a=n'+ Ki(3k,—F), (188)
we must have k, = 3(3—4f) + 0(e?), (189)
from which (178) gives (with our preferred @)

m2a® = p[1+ 1 K(6—17)] +O(Ke2). (190)

41 Vol. 2g9. A
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If, on the other hand, £, is not limited to the value given by (189), then (132), (129) and (188)
lead to the general relation . B _
U—n = }Kn(6—8f—3k,) + O(Ke?). (191)

For completeness, it is worth giving the set of £; corresponding to the theory of Kozai (1959),
and also the set corresponding to unbiased mean elements, as used by Berger & Walch (1977) and
Kinoshita (1977), in particular. In addition to £, ko, k., k5 and £, given by (183), (166), (167),
(162) and (180) respectively, the Kozai theory requires

k, = 2h{5+272/(1+7)} + 3f cos 20 (192)

and k; = 0. (193)
For unbiased mean elements, on the other hand, we require, in addition to £, (and also &,) given
PYUSD = A5+ 20/ (1 + )] 179~ 4731 +20)/ (1 + )] cos 2}, (194)
k; = 3¢%{(1+27)/(1 + §)?} cos 2w, (195)

ko = 36%{(1+27)/(1 +q)?} sin 2w, (196)

k, = —¥38F+4(1+27) (f+e2—2¢%) /(14 7)%} sin 26 (197)

and ky=—-3f{3+2(2+¢2) (1+27)/(1+7)?} sin 2w. (198)

It will be seen that mean inclination has almost always been defined such that k; is at most
0O(¢?). However, the advantage of taking £; = 1 was effectively recognized by King-Hele &
Gilmore (1957), who based their mean inclination on the maximum north and south latitude
reached by the satellite. The relation between this mean inclination and the osculating one was
given by Message (1960).

7. J2 PERTURBATIONS IN OSCULATING ELEMENTS
FOR ORBITS OF LOW ECCENTRICITY

For any element, §, the secular rate of change may be expressed in the form

g. = K’Zj) ( 199)

®©
j=1

and the short-periodic perturbation in the form
- § (200
j=1

(by extending the notation expressed by (147)). We are now concerned with formulae for 5’2 and
s, but will be neglecting O(e) contributions.

The basic idea is to ‘bootstrap’ on the first-order solution, substituting it on the right-hand
sides of the planetary equations and re-integrating. The planetary equations must be taken to
O(e) in this process, since Ke = K(é+8e),

where e = Ke,+O(K?),

and hence Ke terms lead to K2 terms without the factor 2. A special procedure, free of further
integration, is possible for { = 4, and thisis developed first. It may be compared with the rederiva-
tion of a, by the general procedure.
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To keep results as general as possible, they will be quoted with unevaluated £-constants, as well
as with the preferred values of § 6.3.

7.1. Perturbation in a (special method)

We want a,, such that B B
a =a + Kag=2(p/7)3 (fcos 2u + %h) + Kay, (201)

a suitable starting point being the exact (136), with (cf. (188))
a =a+Ka(k,—%k); (202)

also p/7 can be eliminated on the basis of (48).

On comparing (136) with (201) it follows that there will be five sources of terms in a,: (i) the
‘g-variation’, lost on replacing K by K; (ii) the generalization from a’ to @, these being connected
by (202); (iii) the perturbation in (p/r)3; (iv) the variation in ¢, which affects fand 4; and (v) the
perturbation in «. The contributions from these sources are as follows, if we neglect terms that
are O(¢) in a,:

(1) —2a(fcos 2u+2k) (feos 2u+k,);
(i) a(fcos 2 +3k) (k, — 3h);

(iii) 3a(fcos2u+3h) (h+ 35 fcos2a);
(iv) af (1—f) (cos 2it— 1) (cos 2u + k;);
v) “$af (6 —7f) sin®2u.

Summation of the contributions gives
ay = 4a{ f2cos4i+f[5—9f— 8k, + 3k;(1—F)] cos 2@
+31[14 - 337+ 24f2 — 6k, h— 9k, F (1 —F)]}. (203)
The constant term here is of no great general importance, and in the next section an arbitrary
constant k,, is introduced, by equation (209), in analogy with £,. However, comparison of (203)

and (209) enables us to obtain the expression for k,, appropriate to an interpretation of  as a’,
i.e. to obtain the second-order relation of a to a’. We set k, to }4, therefore, and obtain

koo = $[(10— 217+ 157%) — 9k, f (1 =f)]. (204)

Applications for this formula are found in §§ 7.9 and 9.7.

7.2. Perturbation in a (general method)

The starting point is the exact equation

Kna (p\*, .. . . . ‘
=35\ {4fsin 2u + e[4hsinv — fsin (u + w) + 5fsin (2u +v)]}, (205)
from which it follows, by (48), (40) and (41), that, to O(e),
d = —3Kna{afsin 2U + e[4hsinv — fsin (u + w) + 21fsin (2u +v)]}. (206)

The object of replacing sin 2x by sin 2U in the main term is to permit first-order integration with
respect to time (as opposed to changing the integration variable to true anomaly, by invoking
(105)). On using (187), the first-order solution then follows at once in the form
8a = } Ka{2fcos 2 U+ é[4hcosv—fcos (i + ) + Tf cos (2 +7)]}, (207)
. 41-2
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452 R.H.GOODING

which is equivalent to (148), with £, = 0, ifallowance is made, by (42), for the difference between
cos 2 U and cos 2.

It is now possible to expand 4, as given by (206), in terms of the first-order reference solutions
for a, e, i, w, U and n. Thus there are six second-order contributions to the total 4, and they
may be denoted by D, d, D, d, etc., where

D,d = (2d/08) D¢.

Remembering that X is a function of @, and that we are neglecting O(K?¢) perturbations, we

obtain
D,d = — Kd(fcos2u+k,),

D,d = — #:K®na[4hsinv — fsin (u + w) + 21fsin (2u +v)]
x [12hcosv + 3fcos (u + w) + Tfcos (2u+v)],
D;d = Kd(1—f) (cos 2u +k;),
D,d =54K?na[4hcosv+fcos (u+ w) +21fcos (2u +v)]
x [12hsinv — 3fsin (u + w) + Tfsin (2u +v)],
Dyd = —31Kd(2—5f) cos2u
and D, d = —2Kd(fcos2u+k,).

Itisimmaterial whether the quantities on the right-hand sides are regarded as osculating or mean,
so ‘bars’ are omitted for convenience. The value of £, must be taken from (189), however, to
validate the use of (187) in deriving (207).

It now follows, after some tedious reduction, that the total second-order contribution to 4 is

given by
Di = —$K?naf {2fsin 4u +[5 — 9f — 3k, + 3k;(1 —f)] sin 2u}. (208)

The formula for second-order da follows immediately, and we may write
ay = a{f?cos 4+ [5— 9f — 3k, + 3k;(1 —f)] cos 2 + 3ky,}, (209)

where it has been convenient to introduce the second-order constant £,,. Clearly (209) is in
agreement with (203).
Taking the preferred values of 4 and 1 for &, and £; respectively, we get

ay = %a(f?cos 4 + 5f hcos 2 + 3k,,), (210)
where the preferred value of £,, is given, as we shall see in § 8.1, by
k2a = 52—7]‘5 2:
i.e. by ko = 1—3f+ 28172 (211)

7.3. Perturbation in ¢

The starting point is the exact equation

: Knsin 27 (p\3 .
- gy st 1
i 5 (r) sin 2u, (212)
which to O(e) gives
i = —}Knsin 2¢{2sin 2U —e[sin (v + ) — 7sin (2u +v)]}. (213)
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The first-order solution follows at once, in the form
i = 4 Ksin 2i{3 cos 2 U~ ¢[3 cos (it + @) — T cos (2u +7)]}, (214)

equivalent to (149) (with k; = 0).
We expand i, as given by (213), in terms of the first-order reference solutions for g, ¢, etc., just
as in § 7.2, obtaining six second-order contributions to Dz, namely

D, i = — 2Ki(fcos 2u+k,),
D,i = £K>2nsin 2 [sin (z + ) — 7 sin (2u +0)] [12A cos v + 3f cos (u + w) + Tf cos (2u +v)],
D, = 3Kicos 2i(cos 2u+k;),
D, = e K2nsin 2¢[cos (u + w) + 7 cos (2u +v) | [12hsinv — 3fsin (u + w) + Tfsin (2u +v)],
Dy i = —3Ki(2 - 5f) cos 2u
and . .
D,i = —3Ki(fcos2u+k,).
Tedious reduction, as for Dd, leads to the total D: given by
Di = 2 K?nsin 2i{(3 + 5f) sin du + 6[ f+ 4k, — k;(1 — 2f)] sin 2u}, (215)
from which the formula for second-order &: follows immediately; thus

iy = — ¢ sin 2i{(3 + 5f) cos 4@ + 12[ f+ 4k, — k;(1 — 2f)] cos 2@ + ky}, (216)

with a convenient second-order constant introduced.
With the preferred values of £, and £, we get

iy = —¢gsin 2i[(3 + 5F) cos 4 + 36 (1 —F) cos 2i + k], (217)
where the preferred value of £,; is given (as we shall see in § 8.3) by
koy = 33 —49f. (218)

7.4. Perturbation in 2

The exact starting point is the exact equation

, 3
0= _an(;osz(g) (1 —cos2u), (219)
which to O(e) gives
Q = —1Kncosi{2(1—cos 2U) +¢[6 cosv +cos (« +w) — T cos (2u +v)]}. (220)

The first-order solution follows at once, and is composed of a secular term, with Q given by (126),
and a periodic term in the form

80 = L Kcosi{3sin2U—¢[18sinv+ 3sin (# + &) — Tsin (2a + )]}, (221)
equivalent to (150) (with &, = 0).

On expanding £ relative to the first-order reference solutions for a, ¢, etc., we obtain the
following six second-order contributions to D£:

D, Q2 = —2KQ(fcos 2u+k,),

D,Q = — K21 cosi[6 cosv +cos (u + ) — 7 cos (2u +v)]
x [12h cosv + 3f cos (v + w) + Tfcos (2u +v)],
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D, Q2 = — LKQ f(cos 2u+k;),

D,02 = — K2 cosi[6sinv—sin (z+ ) — 7sin (2u +v)]
x [12hsinvy — 3fsin (u + w) + 7fsin (2u +v)],

Dy 2 = — KQ(2 —5f) cos®u
and D, 02 = —3KQ(fcos2u+k,).
The total D is given by

DO = —}K%ncosi{(3 +f) cos du— 3(2f— 4k, — k. f) cos 2u
+ (15— 19f— 12k, — 3k, f— 9k,)}; (222)
thus there is a secular component of the second-order D22, and £, has been left in (222) because

the value required depends on the chosen 7, which appears explicitly in 2 (though not in £, -
we have seen in § 6.3 that a mandatory £, is associated with periodic components). We get

0, = — icosi(15— 197 — 12k, — 3k, f— 9k,) (223)
and 0y = —Jgcosi[(3+f)sin 4it — 6(2f — 4k, — k; f) sin 2i], (224)

10 kyq constant being required. (It would be the coefficient of sin Ou!)
With the preferred values of &, and £,, we get

Q, = —3ficosi(3 —4f— 9k,) (225)
and 0y, = —Fgcosi[(3+f)sin4iz+6(4 —Tf) sin 2i ]. (226)

With £, given by (189) (cf. (327) if k,, is taken from (180)) (226) gives

Q, = §ncosi(3—4f). (227)

7.5. Perturbation in &
The exact starting equation is

_ _%’5 (f’) {(4h+f) sinu + Tfsin 3u+ 3e[3(4 — 5f) sin w+ (8 — Tf) sin (u+0)

— (4 —13f) sin (2u 4+ ) + 5fsin (3u +v)]}, (228)
which to O(e) gives

£ = —1Kn{(4h+f) sin U+ 7fsin U +2¢[ (4 — 5f) sin w + (7 — 8f) sin (u +v)
—(142f) sin (2u + w) + 17fsin (3u +v)]}. (229)

The first-order solution follows at once, in a form consisting of a secular term, with &; given by
(129) multiplied by —ésin®, and a periodic term

8¢ = ¢ K{6(4h +f) cos U+ 14fcos 83U+ 32[2(7— 8f) cos (@ +7)
—2(1+2f) cos (2 + ) + 17f cos(3a +7)]}, (230)

equivalent to (151) with &, taken as 2(4+f) cos @.
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On expanding £ relative to the usual first-order reference solutions, we obtain

D, £ = —2KE(fcos2u+k,),

D £ = —2:K?n[(4—5f) sinw + (7—8f) sin (u+v) — (1 +2f) sin (2u + ) + 17fsin (3u +v)]
x [12k cosv + 3f cos (u + w) + Tfcos (2u +v)],

D, £ = 1K?nf (1 —f) (5sinu— 7sin 3u) (cos 2u + k),

D& = — s K?n[(4—5f) cosw — (T —8f) cos (u+v) — (1 +2f) cos (2u + ) — 17fcos (3u+v)]
x [12hsiny — 3fsin (u + ) + Tfsin (2u +v)],
Dy £ = 2&K2n(2— 5f) [(4h +f) cosu + 21f cos 3u] sin 2u
and
D, £ = —3KE(fcos2u+k,).
The total D{ is given by

D¢ = 6 K2n{5f (14 — 17f) sin 5u +[72 — 346/ + 449f2 4 336k, — 168k, f (1 —f)] sin 3u
. —2[108 — 2001 + 772 — 24k, (4 — 5f) — 60k, f (1 — f)] sinu}, (231)
wnence
£y = —335{3f (14 —17f) cos 5 +[72 — 346/ + 44972 + 336f k, — 168k, (1 —f)] cos 3&
— 6[108 — 200 + 77f2 — 24k, (4 — 5f) — 60k, (1 — f)] cos}, (232)

no constant being introduced.
With the preferred values of £, and &,, we get

2

Il

—555{3f (14 — 17f) cos b + (72 — 178f + 113f2) cos 37 — 6(12 + 47— 43/2) cosu}. (233)

7.6. Perturbation in 7
The exact starting equation is

i =f—q"3(§)3{(4h_f) cosu+Tfcos 3u+3e[(12 — 13f) cos @ — 5fcos (u+1)
—(4—12f) cos (2u + w) + 5fcos (3u +v)]}, (234)
which to O(e) gives
i = 1Kn{(4h —f) cos U+ Tfcos 3U + 2e[(4 — 5f) cos w + 5(1 — 2f) cos (u + 1)
— (14 2f) cos (2u + w) + 17fcos (3u+v)]}. (235)

The first-order solution follows at once, in a form consisting of a secular term, with 7, given by
(129) multiplied by ¢cos@, and a periodic term

8 = 3 K{6(4h—F) sin U+ 14fsin 3T+ 32[10(1 — 2f) sin (@ +7)
—2(1+2f)sin (28 +®) + 17fsin (3@ +7)]}, (236)

equivalent to (152) with £, taken as 2(42—f) sin@.
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On expanding 7 relative to the usual first-order reference solutions, we obtain:

D,7% = —2K5(fcos 2u+k,),
D,sj = #:K2n[(4—5f) cosw + 5(1 —2f) cos (u+v) — (1 +2f) cos (2u + w) + 17fcos (3u +v)]
x [12kcosv + 3fcos (u + w) + Tfcos (2u +v)],
D,% = —ZKf (1 —f) (cosu — cos 3u) (cos 2u + k),
D,1 = — 34K [(4—5f) sinw — 5(1 — 2f) sin (u +v) — (1 + 2f) sin (2u + w) — 17fsin (3u +v)]
x [12hsinv — 3fsin (u 4+ w) + Tfsin (2u +v)],
Dy = $K%n(2 —5f) [(4h—f) sinu + 21fsin 3u] sin 2u
and
D, % = —3K4j(fcos2u+k,).
The total Dy is given by
Dij = — g K?n{5f (14 — 17f) cos bu +[72 — 310f + 395f2 + 336k, — 168k, f (1 —f)] cos 3u

— 2[84 — 224f+ 1552 — 24k, (4 — Tf) — 84k, f(1 —f)] cosu}, (287)
whence
Ny = —g55i8f (14— 17f) sin 5 + [72 — 3107 + 39572 + 336/ k, — 168k, f (1 —f)] sin 3u
— 6[84 — 2247+ 1552 — 24k, (4 — Tf) — 84k, f (1 —F)] siniz}, (238)

no constant being introduced.
With the preferred values of £, and k;, we get

Ny = —5igidf (14 — 17f) sin 5@ + (72 — 1427+ 591 %) sin 3if + 6(12 — 47+ 13 %) sinu}. (239)

7.7. Perturbation in o+ @
From the exact equations:

w = %(‘g)a{élkcosv—fcos (u+ w) +Tfcos (2u +v)
+ Le[4h cos 20— 2(4 — Tf) cos 2u + 5f cos 2(u +v) +fcos 2w + 2(6 — Tf)]} (240)
and e = ~%(§)3{4hcosv—fcos(u+w)+7fc0s(2u+v)
+ Le[4h cos 20 — 18f cos 2u + 5f cos 2(u +v) + fcos 2w — 124]}, (241)

it follows that, to O(e),
6+ = §Kn{8[(3—4f) — (1 —4f) cos2U]
+e[2(38 —51f) cosv+ (4 —17f) cos (u+w) —7(4—17f) cos (2u+v)]}.  (242)
The first-order solution follows at once; it consists of a secular term, in conformity with (129) and
(130), and a periodic term in the form
80 +6w = —34 K{12(1 —4f) sin2U—¢[6(38 — 51f) sin v+ 3(4 — 17f) sin (i + @)
—7(4—17f) sin 2z +7)]}. (243)
This is equivalent, by (42), to a result that could be added to equations (148)—(154), namely
o, + 0, = —%{24(1 — 4f) sin 2w — £[6(38 — 51 ) sin 7 — 3(4 — 15f) sin (Z + @)
—(4—23f)sin (28 +7)]}. (244)
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On expanding ¢ + & relative to the first-order reference solutions, as usual, we obtain:
D,(6+0) = —-2K(6+0) (fcos2u+k,),
D, (6 +0) = &K?n[2(38—51f) cosv+ (4 —17f) cos (u +w) —7(4— 17f) cos (2u+v)]
x [12h cosv + 3f cos (u + w) + Tf cos (2u +v)],
D;(6+0) = —4K?nf (1 —f) (1 —cos 2u) (cos 2u +k;),
D, (6 +0) = ¢6K?r[2(38—51f)sinv— (4 —17f) sin (u + w) —7(4 — 17f) sin (2u +v)]
x [12hsinv — 3fsin (4 + w) + Tfsin (2u +v)],
Dy (6 +0) = — 3K2n(1—4f) (2 —5f) sin®2u
and
D,(6+6) = —3K(6 +o) (fcos2u+k,).
The total D(6 + &) is given by
D(6 +6) = 25 K2n{(24 — 4f — T3f2) cos 4u— 4[ f (64 — 51f) — 24k, (1 — 4f) — 48k, f (1 —f)] cos 2u

+[(432 — 1052+ 637f2) — 24(3 — 4f) (4k, + 3k,) — 192k, f (1 — )1}, (245)
where a term in £, has been retained in the secular component for the same reason as with D£2.
Wzget (G +0), = 2[(432 — 10527+ 63772) — 24(3 — 4F) (4k, + 3k,) — 192k, F(1 —F)]  (246)
an

(04 0)y = 135{(24 — 4F — 73f?) sin 45— 8[ f (64 — 51f) — 24k, (1 — 4f) — 48k, f (1 —f)] sin 2&}.
With the preferred values of k, and £;, we get (247)
(T+w), = f5n[(144 — 4287+ 253f2) — 72k, (3 — 4f)] (248)
and (0 +w), = 1h5{(24 — 47— T372) sin 4i7 + 8(24 — 1487+ 14772) sin 2i}, (249)
and with £, given by (189) we get
(T +), = — 757(288 — 7241 + 515f2). (250)

7.8. Perturbation in n and in f ndt¢

To be able to analyse the perturbation in U, as we shall in §7.9, we need a formula for the
perturbation in f;ndt, to combine with D(o + ), after (12) and (3). Thus we first need the
formula for n, that is associated with the perturbation in 7.

The perturbation in n could be obtained by the usual method, involving integration, but it is
more direct to obtain it from the perturbation in ¢, by making use of the fundamental Kepler
relation (4). This is possible even though, because the k-constants for z and a are independent,
7 and @ will not in general satisfy the relation themselves. We introduce 7, and /,, therefore,
dependent only on f (so long as we work only to first order in ¢), such that

m2ad = p(1+ Ki, + K20,). (251)
This is equivalent to the relation

n2a® = 2a3(1+ Kji, + K20,) 7, (252)

42 Vol. 29g9. A
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where a strong reason for introducing the relation in this form, rather than reciprocally, is that
the final expression for /i,—see (278) —becomes very simple; reciprocally, the relation is

n2a® = a1 — Kji, — K2(f,—i2)]. (253)
The general first-order result, previously given by (178), may now be written in the form
ﬁl = 3(kn _ka)a (254)

neglecting the factor -2 which contributes O(¢2) terms, and with the preferred £, and the usual
k,, this reduces (cf. (190)) to

i = 46-77). (255)
But a = a+ Ka, + K,
and n =7+ Kn;+ K?n,,
from which it follows that
n2a® = n2a3(1+ Kd, + K2d,)® (1 + Kn, + K24,)2, (256)

on defining 4, to be a,/a, etc., for convenience. On comparing (253) and (256) it follows that
fly = —(3dy + 24,) (257)
and Hy = 643 + 6d, 7y + 372 — 3dy — 21y, (258)

There is nothing new in (257), which just leads to (254) again, but (258) leads to the desired
formula for n,. To see this, we start with formulae for 4,, 7, and d,, which follow from (148), (154)
and (209) respectively, whereupon (258) gives

2y + [l = ${Tf2cos 4t — 4f[2(5 — 9f ) — 12k, + 6k;(1 —F) — 9k,] cos 2u
+ 3(5f2 + 16k% — 24k, k,, + 18k2 — 8ky,)}. (259)

(Itis legitimate to leave £, in the coefficient of cos 2&, in spite of the remarks of § 6.3, because it
arises through expansion of (258) and not from integration.)
But /i, must be independent of #, so we must in consequence of (259) be able to write

ny = 1512 cos 4it — 4f[2(5 — 9f ) — 12k, + 6k, (1 —f) — 9k, ] cos 2@ + 16k,,}, (260)
where the introduced constant £,,, is such that
Ao = 3(5f2+16k2 — 24k, k,, + 18k2 — 8k,,) — 2k,,. (261)
With the preferred £, and £, and the usual %, (260) reduces to
ny = {712 cos 4i + 8f (7T — 9f ) cos 2i + 16k,,,} (262)
and (261) to Ay = 3(40 — 1041+ 7312 — 8k,,) — 2ks,,. (263)
To obtain the perturbation in f ' ndt, we observe that
n = n+ Kny+ Kn,, (264)
where n; (cf. (154) and (207)) is given by

ny = —3a{ fcos 2U+k, + }é[4h cos v —fcos (4 + @) + Tf cos (2u+v)]}. (265)


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

| A

”/\\ \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A SECOND-ORDER SATELLITE ORBIT THEORY 459

Then writing the required integral as a sum of secular and periodic components, we have

t — —
f ndt = (i4+5) £+ Kf +K2f, (266)
0 1 2

where (265) and (262) imply that
dn/ii = — 3 Kk, + K?k,,. (267)

For f 1, we integrate the periodic term of (265), obtaining
f = — H3fsin2 U+ ¢[12ksin o — 3fsin (@ + @) + Tfsin (224 7)]}. (268)
1

For fz, similarly, we integrate (260) to obtain (since &, must necessarily be taken from (189) as
usual)

f = delT7*sin 47+ 167[4 — 3+ 6k, — 3k, (1 ~F) ] sin 2}, (269)

which with the preferred values of k, and k; (or from (262) directly) reduces to

L — {172 sin 47+ 167 (7 — 9F) sin 2@)}. (270)

7.9. Perturbation in U

From (3), (12) and (266) we obtain at once, on combining (129) and (130) with (267), and
(243) with (268), the first-order secular result, i.e. U,, implied by (191), and the periodic term

given by
U, = —34{6(2—5f)sin2U—¢[6(26 — 33f) sinv + 3(4 — 11f) sin (# + @)

~7(4—11f)sin (22 +7)]}, (271)

which is equivalent to (153).
The expression for U, is given by combining (247) and (269); thus

U, = 2{(6 —f— 13f?) sin 4t — 2[ f (40 — 33f) — 12k, (2 — 5f) — 30k, f (1 —f)]sin 2&}. (272)
With the preferred values of £, and &,
U, = 25{(6 —f— 13f2) sin 4t + 2(24 — 106f + 93f2) sin 2i }. (273)

Again, the general expression for U2 is given by combining (246) with the second-order
component of 87, given by (267); thus

U, = [ (432 — 10527 + 63772) — 24(3 — 4F) (4k, + 3k,) — 192k, F (1 —F) +48k,,]. (274)

When U1 is zero, through £, having the value given by (189), it is obviously desirable for (72 to
be zero as well, and (274) indicates that this requires

kay, = — 2{ F(100 — 1317) — 96k, (3 — 4F) — 192k, F (1 —F)}. (275)
With the preferred values of k, and £;, this gives
ko, = 45(288 —724f+ 515f2). (276)
The associated value of Z, is given by (261). Taking k,, as given by (275), we find

fiy = 7{(324 — 8147+ 53372) — 120k, (3 — 4f) + 7242 — 96k, (1 —F) — 36Ky},  (277)
42-2
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but with the preferred values of £, k; and £,, we get a tremendous simplification, to

Ao = def (4= 197). (278)

It may, however, be considered undesirable to tamper with the Kepler relation, in which case
A, must be zero and we cannot force U, to be zero. But, for (261) to give zero, we require

kon = 355 (5% + 16k% — 24k, k,, + 18k3, — 8k,,) (279)
and then (274) gives ‘
U, = J47{(216 — 5267+ 341f%) — 12(3 — 4) (4k, + 3k,) — 96k, F (1 —F)
+72k% — 108k k,, + 81K2 — 36k} (280)
Instead of substituting our preferred £, and the usual £, in (279), it is instructive to set

k, = k, = 2h, with k,, given by (204), i.e. appropriate to @ = a’, since we can then interpret 7 as
the exact constant n’. The resulting expression for k,n is given by

ko = — 25 (40— 48f — 157*) — 72k, (1 =/)]; (281)
with the preferred £,, kop = — 75(40 — 1207+ 5772). (282)

7.10. Comparisons with other authors’ results

The formulae obtained have been compared in detail with the results of Bretagnon (1972),
Berger & Walch (1977) and Kinoshita (1977). A full report of these comparisons was made by
Gooding (1979) and will merely be summarized here.

To compare with the two French papers (Bretagnon 1972, Berger & Walch 1977), it was
necessary to derive results for ¢, and w, from those (in §§ 7.5 and 7.6) for £, and », This was not
a trivial matter, since ¢, and w, are 0(¢-!) and O(¢-2), respectively, whereas (effectively because
of the proximity of the eccentricity singularity) results were needed to 0(2°) and O(¢71).

Complete agreement with the results of Berger & Walch was obtained, on the assumption that
they used unbiased mean elements, with implicit first-order £, given by (185) and (194)-(198),
and with the second-order constants (k,, and k,;) both zero. However, argreement with the
results of Bretagnon (1972) could only be obtained by changing the values of £, and k;, in an
apparently arbitrary manner, as each {, in turn was checked.

To compare with Kinoshita’s results it was first necessary to obtain expressions for a; and o,,
where o = a? and the basic identity is

(@+ Ko, + K2,)? = a+ Ka, + K?2a,. (283)
We have the first-order relation 200, = a, (284)
and the second-order relation al+ 2o, = a,, (285)

which yield
oy = 75a{5f2cos 4i + 4f[2(5 — 9f ) — 9k, + ﬁk;,(l ~f)] cos 2 — 3(f2+2k% —8ky,)}.  (286)

Complete agreement was obtained, but only after setting k,, empirically to {5 (12 — 307+ 2572).
It seems that this value was (effectively) used by Brouwer (1959), since this assumption also

resolves a discrepancy in formulae for M, as given by Bretagnon (1972) and Brouwer (1959),
remarked upon by Bretagnon (1972).
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8. J2 PERTURBATIONS IN POSITION

To obtain perturbations in the cylindrical polar coordinates described in § 3.3 is essentially a
matter of combining existing results, no further integration being required. As a simplification,
we throughout set k,, k;, £, and £, to their preferred values, as given by (160), (176), (177) and
(170), since this preference was based on the resulting simplicity in the first-order formulae for
perturbations in coordinates.

Itis convenient to give, in advance, some of the formulae that will be required. Thus, neglecting
0(¢) terms in each case,

g cosit+nysini = k+§ fcos 24, (287)

gisinid— 7y, cost = — 1 fsin 2z, (288)

£ycos@+mysind = — 35 f{3(1 —F) cos 4t — 2(10 — 11f) cos 2a — 3(1 —Tf)}, (289)

Eosin@— 1y cos @ = 737{3f (10 — 13f) sin 4it + 2(36 — 407 — 72) sin 2ui’} (290)

and (€3 — %) sin 2@ — 2&, 9, cos 24 = — & f(5fsin 4 + 12k sin 2@). (291)

These formulae follow at once from (151), (152), (233) and (239).

8.1. Perturbation in r

We require formulae for r; and r,, such that
r = 7+ Kr,+ K, (292)

where 7 is derived from mean elements by application of the standard algorithm of § 3.3, while
1 and 7, are purely periodic.
Now (49) and (45) yield
r = a(l—ecos M +e*sin® M) + O(e3),
from which it follows that
r = (a+ Ka, + K?a,) {1 — (E+ K&, + K?£,) (cos U~ KU, sin U)
— (M + Kpy+ K2n,) (sin U+ KU cos U) +[(E+ KE,) sin U~ (5 + Ky,) cos U]}, (293)
only such terms being retained as will actually be needed.
On expanding (293) and comparing with (292), we obtain the first-order formula
r = (7/a@) a,—a[(& cos U+, sin U) —zsin M(U, + 2&, sin U— 27, cos U)]. (294)
The formula for r,, similarly, is

ry = (7/@) ay—ay(£y cos U+ sin U) —a[(£,cos U+y,sin U)
— (&,sin U~y cos U) (£;sin U—9, cos U+U,)]. (295)

We can replace U by #, of course, since we are ignoring O( Ke)-perturbations. Then 7, is a
combination of terms given by (210), (148), (287), (289), (288) and (153), the result on reduction
being

1y = —5a{ f?cos 4 + 2f (26 — 31F) cos 20 + T2h% — f2 — T2k, }. (296)
Choice of k,,, as anticipated by (211), now gives our final result, namely

1y = —#saf{ fcos 4+ 2(26 = 31f) cos 2i }. (297)


http://rsta.royalsocietypublishing.org/

'

A A

‘/\\\
/9
JA

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

YA \

Yam \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

462 R.H.GOODING

8.2. Perturbation in u

We require formulae for #, and u,, such that

u = i+ Kuy + K2u,, (298)
where u, and u, are purely periodic.

Now (38) yields u = U+ 2¢sin M +5¢>sin 2M + O(é3),
from which it follows that
u= U+ KU, + KU, +2(E+ K&, + K2£,) (sin U+ KU, cos U)
—2(5+ Ky, + K29,) (cos U~ KUysin U)
+HIE+ KE)2— ( + K,)?] sin 2 U—2(E + KE,) (7 + Kop,) cos 2T}, (299)

with only the needed terms retained.
On expanding (299) and comparing with (298), we obtain the first-order formula

u; = Uy +2(&;sin U — 9, cos U) + Le[4U, cos M + 5&, sin (@ +7) — 5y, cos (@+19)].  (300)
The formula for u,, similarly, is
Uy = Uy +2(£ysin U~y cos U) + 2U, (& cos U+, sin U)
+3[(£2 —92) sin 20— 2&, 9, cos 2 U]. (301)
We replace Uby & and obtain u, as a combination of terms given by (273), (290), (153), (287)
and (291), the result being
Uy = 137{(18 — 3/ — 1772) sin 4i + 2(72 — 170/ + 97/?) sin 2u }. (302)

8.3. Perturbations inr', u’ and ¢

The first-order results, given in § 6.3, were based on formulae (57)-(59), which are not valid
when we proceed to second order. Thus we require a fresh start, based on the formula (54) that
effectively defines the cylindrical polar coordinates 7', 4" and c.

Now (x y 2z)Tisgiven by both (50) and (54), so an exact equation for 7', 4" and ¢ is

(r'cosu’ r’sinu’ )T = Ry(7) Ry(Q) Ry(—2) Ry(—1i) (rcosu rsinu  0)T. (303)
We want to use (303) as source for perturbation formulae that are correct to second order. Now
Ry(2) Ry(— Q) = Ry(2—0) and, of course, 2—0 = 2 by the basic definition (43). We write §
in place of 80, for convenience, and also write
t=1i—7 (=381),
with the sine and cosine of i and 7 denoted by s, ¢, s and ¢. Then the second-order approximation
of (303) is

r'cosu’ 1-382 —cd ) rcosu
r'sinu’ | = cd 1—32—1c28% — 1+ §scd? rsinu ).
¢ —58 ¢+ $scd? 1— 32— 15252 0

The individual equations may be written as

r'cosu’ =r(cosu—cdsinu—}48%cosu), (304)
r'sinu’ = r[sinu +¢d cosu — §(¢2 +c28?) sin u] (305)
and ¢ =r(tsinu—sdcosu+ §scdZsinu). (306)
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To firstorder, we again see that 7’ = r and recover the results given by (173) and (174) of § 6.3.

To second order, we still have identity between r’ and r, consequent on our choice of k;, as
remarked at the end of § 3.2. Thus we need not consider 7’ as a separate quantity, but note that
we would have to do so if we were concerned with O(K??) perturbations.

We can now obtain the second-order perturbation in «’, using either (304) or (305) —as a check
we use both. From (304) we have

cosu’ = cosu— (C—5t)dsinu— $d%cosu, (307)
where § = KQ,+ K20, and ¢ = Ki,, while from (305) we have
sinu’ = sinu +¢d cosu — §(¢ +c232) sinu. (308)
But if v denotes ' — 4, we have the Taylor expansions
cosu’ = cosu—vsinu—fvicosu
and sina’ = sinu + v cosu — v?sinu.

We identify the two expressions for cosu’, and likewise for sin«’, expanding v according to the

formula v = Kv, + K%, (309)
where v, and v, are required. It is immediate that
vy, = 2, (310)
but we have two formulae for vy, namely
(v —Cy) sinu = —5i, 02, sinu + §(2% —v3) cosu (311)
from the cosu’ identity and
(v, —CQ,) cosu = (V3 —12 —c20%) sinu (312)

from the sinu’ identity. On substitution for v,, 7; and £2,, we get the same formula in both cases,
Vy—CRy = — P f(1—F) (sin 4+ 2 sin 2u). (313)
From (226), the formula for 2,, we now get
vy = — (1 —F) {(6 + 5f) sin 4ir + 2(24 — 39f) sin 2& }. (314)
For u, it remains to combine (302) and (314), the result being
Uy = — f{fsin 4 — (19— 20f) sin 2@} (315)

We finally obtain ¢; and ¢,, where
¢(=8¢) = Key+ K2, (316)

from (306). We consider this equation in the form
¢/r = K(iysinu—580, cosu) + K2(iysinu—502, cosu + §scQ%sinu). (317)
Now from (149) and (150), identifying » and # only in the ¢ term,
iysinu— O sin7cosu = §sinicos#{[sinu —sin (2 —u)] +4%¢[2sin (¥ +7) —3sinw]}. (318)

Thus we have recovered (174), except that there is a ‘second-order carry-over’ given by the first
term of (318), which can be written as 1(u — ) sin 27 cos #. The second-order terms now combine

to give o - NP s o-
8 Cof7 = tysinu— ,sin7 cos u 4 102 sin 27 sin u 4 §u, sin 27 cos u, (319)
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which from (217), (226), (150), (53) and (173), if we replace u by #, reduces to
¢y = — g7 sin 27{8f sin 3 — (33 — 49f — k) sin}. (320)

The reason for choosing k,; according to (218) should now be apparent, and the final result is

simply ¢y = —{57fsin 27 sin 3. (321)

9. COMPLETE SECULAR AND LONG-PERIODIG PERTURBATIONS DUE TO J2
9.1. General remarks

The original intention was to limit the analysis of J3-perturbations in this paper strictly to
e-independent terms, and the resulting expressions have been seen to be very simple. However,
for an eccentricity of 0.01 say, a low-altitude satellite experiences long-term perturbations of
order JZe that, within about a day (since this corresponds to an angular motion of about
100 radians), are of the same order of magnitude as the short-period perturbations of orderJ3.
Hence the paper would not be complete without consideration of these long-term effects. Once
we go to order J2e, there is not much difficulty in giving the full formulae, valid for any eccentri-
city. They are quoted without full proof, since derivations are available in Merson (1966) -
Merson, like Gooding (1966), gives complete first-order formulae for the long-term perturbations
due to the general zonal harmonic, Ji.

The long-term e-independent perturbations are purely secular. When e-dependent terms are
considered, however, the long-term perturbations contain long-periodic components, trigono-
metrically related to the argument of perigee (@), as well as purely secular components. The
nature of these perturbations is frequently misunderstood, so some general remarks are offered
before the results for the elements a, ¢, 7, 2, © and M are given. (There is no need to go to non-
singular elements £, 7 and U, since ¢! factors do not appear in the long-term perturbations.)

Suppose a term Kricos k@ (with K not necessarily the J,-related quantity used in this paper)
occurs as a component of the rate of change of some element, ¢ say. If @ is constant (as it is for
orbits at the critical inclination) we can integrate to get a secular perturbation K7t cos ko. If @
is not constant, but is itself essentially secular with rate @, the perturbation can be written (in the
A notation of §3.1) in the form AE = (K k) [sin ka,

where [...] designates ‘variation over the period of integration’, i.e. it is a definite integral. The
two results are compatible, since [sin k@] /k@ tends to £ cos ka, over the interval ¢, as @ tends to
zero. If, however, A is written with an arbitrary lower limit of integration, as with short-
periodic perturbations, in particular in the form sinka/kw, the perturbation has an apparent
singularity for @ zero.

As was made clear by Merson (1966), trouble is avoided if we keep to definite integrals. Since
we are concerned with k = 2, we denote by I, and I the time integrals of cos 2@ and sin 2w —
Merson denoted the negatives of these quantities by C, and S, respectively and showed how they
might be neatly evaluated.

The difficulty is largely a matter of terminologyt. The terms *first-order’, ‘second-order’, etc.,

1 The long-standing division of opinion over the problem of the critical inclination is a good example of the
semantic confusion related to the meaning of ‘order’. As Allan (1970) has pointed out, the behaviour of certain

of the orbital elements over very long periods of time is indeed a libration of amplitude proportional to J3, but
this does not imply a singularity — the effect arises from rates of change that are still only of order J3.
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are uncontroversial when used to describe short-periodic and secular perturbations, a second-
order (J3%) perturbation having the intuitive meaning that the perturbation would have been A?
times smaller if J, had been A times smaller. It is not so simple for a long-periodic perturbation,
however, since the frequency of such a perturbation itself varies (linearly) with J, and there is no
longer such an obvious meaning; a long-periodic component of ¢ proportional to J2 leads to a A{
term whose amplitude falls only in proportion to A when the { component falls in proportion to A2,
but it is misleading to interpret this by deeming the A{ term to become first-order in J,.

There is no problem if we take the order of a long-periodic perturbation from the power of J,
appearing in the appropriate rate-of-change component, i.e. in ¢ for element ¢ With this
philosophy, there are no long-periodic perturbations of first-order (though J, is exceptional here
and there are first-order perturbations in Jy, etc.). Second-order perturbations arise, and may be
expressed in terms of K2il. and K2il. Since

I, = [sin 200] /2w,
where w = L Kn(4 - 5f),
we have K?il, = K[sin 2]/ (4 - 5f)

(and K?2ils similarly). This can be verified as still of second order, according to the theory of
asympto'tic development (Dieudonné 1968), even though it is superficially of first order and has
become regularly so regarded in the literature. There appears to be no merit whatever in mis-
representing these perturbations since they are, after all, not merely less important than first-
order secular perturbations, but are also less important than second-order secular perturbations.
(Their long-term magnitude is admittedly much greater than for short-periodic perturbations
of the second order, but this is no more than the usual more-important-if-longer-period effect.)

This is not the full story, however, as we encounter some apparently first-order long-periodic
perturbations that are really of third order. The dominant secular perturbations 2 and », given
by — Kicos7and % Ki(4 — 5f) respectively, are functions of ¢ (an argument of K) and 7, so that
they have induced long-periodic variation — thus cos 7is equal to an initial (hence constant) value,
cos 7y, plus a term given by — Az sin 7,. The integral of K A7isitselflong-periodic and of third order,
but because two integrations are now involved it is apparently first-order, particularly if written
with a factor @—2. Since, as we shall see, Ae and A7 are multiples of I, it is natural to introduce the
notation /7 for the integral of this quantity, i.e. for the double time integral of sin 2w.

Two further introductory points must be made. First, the form each long-periodic perturba-
tion takes is dependent on the expression for the first-order short-periodic perturbation, in that
the arbitrary £-constant may be chosen, in different ways, as a function of @. Secondly, there is an
entirely different way of looking at second-order long-term variation, and this was the approach
originally adopted by Merson (1961) and Gooding (1966), in particular. Itinvolves the derivation
of each element’s variation over a complete revolution of the satellite, to eliminate the short-
periodic effect, but now the interpretation of ‘ complete revolution’ is crucial: the variation from
perigee to perigee, for example, is different from the variation from node to node, not because
perigee and node are different points but simply because there is a slippage (due to @), as between
successive perigees and successive nodes.

9.2. Perturbation in a

There is no secular perturbation in the semi-major axis, nor is there any second-order long-
periodic variation so long as the @-dependent part of the ‘constant’ £, is specifically $ f&2 cos 2@.

43 Vol. 2g9. A
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This is the case for all four of the k, given in § 6.3, by (160), (179), (183) and (185). Given an
arbitrary £,, however, we have a long-periodic perturbation given by
Aa = Kag—2[2fe?cos 20— k). (322)
As indicated at the end of § 9.1, there is an apparent long-periodic effect if we only consider
the semi-major axis at, say, perigees or ascending nodes. For perigees, the effect is given by
Aa = — K¥iag2(1+&)3f(4—5f) L,

as follows from equation (181) of Gooding (1966).

9.3. Perturbation in e

There is again no secular perturbation, but there is a long-periodic perturbation given by
Ae = — 3 K2ieq?f (14 — 15f) Is + L Ke[3f cos 2 — k], (323)

where the second term vanishes for both our standard £,, given by (161), and the value implied
by use of Kozai elements, as given by (192). Berger & Walch (1977) and Kinoshita (1977) impli-
citly use the value given by (194), whence it follows that, to O(¢), their expression for Ae should
involve a factor 2(13 — 15f) in place of the factor 14 — 15f1in the standard expression. This is con-
firmed by line 15 of page 112 of Berger & Walch (1977).

9.4. Perturbation in 1
A simple relation exists between perturbations in osculating a, ¢ and 7, since p cos?i is constant
for any potential field that is symmetric about the z-axis, in particular for the potential asso-
ciated with J,. It follows that, fcr variations in the osculating elements,
81 = coti($da/a—ede/q?) (324)

and the corresponding relation ekpressing Ai in terms of Aa and Ae also holds, so long as

4[[ka]} - e—lekeI] - 4fq_2IIk’L]] =0,
which is satisfied both by our standard &’s and the &’s corresponding to unbiased mean elements.
It follows that, for general £;, :

Ai = 2 K2hz?sin 27 (14 — 15f) Is—  Ksin 2[k,], (325)

the second term vanishing for both our standard k; (unity) and the Kozai k; (zero). However,
Berger & Walch (1977) and Kinoshita (1977) implicitly use the value of k; given by (195), whence
it again follows, to O(Z), that their expression for Ai should involve a factor 2(13 — 15f) in place
of the factor 14— 15f in the standard expression, and again this is confirmed.

9.5. Perturbation in Q

The complete second-order long-term perturbation may be obtained from the following
expression, effectively obtained by Merson (1966) for the rate of change of the mean element:
dQ 1(w

5= Kﬁcosi[1+—2—(ﬁ)

%
ow

22 cos 25 [ (14 — 3F) — 28%(7 — 157)] — 48k, + 126%, — 127 7%, — 36kn}] . (326)

+ 5 K7 2415 - 197) +2(4 — 0) —#3(4+ )


http://rsta.royalsocietypublishing.org/

e \

A A

JA

A

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A SECOND-ORDER SATELLITE ORBIT THEORY 467

We consider the secular component first. With our standard values of k,, £, and £;, and with £
given by (180), we get

n

2, = Jaficosi{4(3 — 5F) —a2(4 + 5)), (327)
a truncated form of which is given by (225) with &, = 2. With the &’s of Kozai, on the other
hand, we get @, = 4 cos 1{48hg —4(9—10f) —22(4 + 5f)}, (328)

as given (effectively) by Kozai (1959) and Merson (1966). Finally, with the &’s of Berger &
Walch (1977) and Kinoshita (1977), we get

@, = — i cosi{24k7 + 4(9 — 10F) +22(4 + 57)}, (329)

in agreement with results in these papers—since Berger & Walch use (R/a)* rather than (R/p)*
as (effectively) a factor of K, the bracketed expression here must be multiplied by 7-8 before
agreement is evident.

Turning to the long-periodic component, we can write the basic second-order perturbation

ALy, as B
AQy = — & K2ig2(7T—15f) cosil. — % Kcosi [k,]

+31 K2ig 2 cos Zf{4[4(ka)w — 3f2cos 2a]

—42*[(k,), — 3fcos 2] + 41 72(k;), + 3[4(k,), — 3f €2 cos 2w} dt, (330)

where (£,),, denotes the w-dependent (long-periodic) part of k,, etc. But in addition we now have
an induced (third-order) perturbation Af;,,, as explained in §9.1. On the assumption that the
first-order secular perturbation is computed from

02 = — K,7ycos i,

where zero-suffices have been added to indicate that we use initial values of the mean elements,
our additional perturbation is given by

AQiq = — Ki cosi(4e‘zj—2fAe d¢—tan z'fAidt); (331)
from this, using (324), we may write
AQq = — 5 Kiiég—2cosi f Aedt. (332)
Hence our standard expression for the combination of AQ, and A&, is given by
AQ = — 3¢ K*e2 cos 1{2(7 — 15f) I — 5 Kif (14 — 15f) I1,). (333)

Use of the £’s of Berger & Walch (1977) and Kinoshita (1977), on the other hand, including £,
by (196), leads to

AQ = — 3 K2iz? cos#{[2(13 — 30F) + 0(¢2)] I — 10 Kaf (13 — 15) IL); (334)

if (by taking indefinite integrals instead of evaluating I, and I~ see the discussionin §9.1), we
interpret this as a first-order perturbation, we get

_ Ke2cosi(52 — 120+ 75f?)
12(4 — 5f)2

in agreement with line 20 of page 112 of Berger & Walch (1977).

sin 20 + 0(¢4), (335)

43-2
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9.6. Perturbation in w

The complete second-order long-term perturbation may be obtained from the following
expression, effectively obtained by Merson (1966), for the rate of change of the mean element:

d?? - %—ﬁ[ (4-9/) -3 (;) %k + 45 Kg2{2(288 — 676/ + 395f2) —22(40 + 4 — 6572)

—74(56 — 36— 45f2) — 2 cos 20 [20(5 — 6f) — £2(28 — 47 + 1572) +&4(28 — 1587+ 135f2)]

24 (4— 57) (4, — 2%, + 3k,) — 2407 (1 —F) 21{1}] (336)

We consider the secular component first. With our standard values of £, k, and %,, and with £,
given by (180), we get

Wy = — g5 2f (4 + 25f) — 72(56 — 36f — 45F2)). (337)
With the £’s of Kozai, on the other hand, we get
Wy = — 379647 (4 — 5f?) — 2(192 — 412f + 215f2) — £2(56 — 36— 45(2)}, (338)

as given (effectively) by Kozai (1959) and Merson (1966). Finally, with the £’s of Berger & Walch
(1977) and Kinoshita (1977) we get

Wy = J5{48h7 (4 — 5F) + 2(192 — 4127+ 21572) + 72(56 — 36/ — 4572)}, (339)

in agreement with results in these papers; as with Q,, the bracketed expression must be multiplied
by 778 to make agreement with Berger & Walch evident.
Turning to the long-periodic component, we can write the basic second-order perturbation as

Awy = — ¢ K2{2f (14 — 15f) —2(28 — 158 + 135f%)} I. — & K[k, + 3fsin 20]
— i K2ag f ((4—5F) {4[4(k,), — 3/ cos 28] — 422[(k,),, — 3] cos 28]
+3[4(k,), — 3f¢2cos 2]} + 40f (1 —F) g2(k,)» dt, (340)

with the same notation as for AQ;,. We also have an induced perturbation Awy,q, that arises from
computation of the first-order secular perturbation by using

w = 1K, 7,4 —5f,).

This additional perturbation is given by

Awyng = Ki [25&‘2(4 - 5f)fAe d¢—5sin7 cos ZfAi dt] ; (341)
this gives, by using (324),
Aw = Kreg—2(13 — 15f) f Aedt. (342)

Hence our standard expression for the combination of Awy, and Awy,g is given by
Aw = — & K2{[2f (14 — 15f) —¢2(28 — 158f + 135f2) |1 + 2 Kng®f (13 — 15f) (14 — 15f) II}. (343)

Use of the £’s of Berger & Walch (1977) and Kinoshita (1977), on the other hand, including £, by
(197), leads to

Aw = — ¢ K2a{[2f (18 — 15f) —2(26 — 155 + 140f2) + O(¢*)] I + 2 Kne®f (13 — 15f)2IIs}; (344)
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if we take the apparent first-order perturbation that results, we get

Ksin 2w . . 3 4
RE7 IR (9] (52— 125+ T572) — 22(104 — 4124 55572 — 2507%) + 0(¢4)}  (345)

and this conforms with lines 23 and 24 of page 112 of Berger & Walch (1977) if we remember to
replace K by K74(1—¢2)-2 so that the coefficient of 2 changes to

— (104 — 6207+ 105572 — 55073).

7. Perturbation in M
Merson (1966) has effectively shown that the rate of change of M is given by

dM/dt = n' — 35 K2ag%{(8 — 8f — 5f2) — 2f (14 — 15f) cos 2@} + 4 Kgw(ky, /0w + 6f cos 20),  (346)

where the final term has been added here to cover the possibility of a non-standard value of &,.
It is noteworthy, in this basic formula, that there is only a second-crder term, residual to the
absolute constant n” introduced in § 3.

Equation (346) could be generalized to replace n” by an arbitrary 7, with explicit appearance

of arbitrary £, and k,, (it would be necessary to write 7,, to emphasize initial value, if the
J-component were other than £ f¢2 cos 2@) but little is to be gained by doing this. In fact it makes
no sense to try to give an accurate (untruncated) general expression for the overall secular
variation, M since components that are O( K2¢) can always be omitted on the basis of their
equivalence to constant O( K2¢) components in the semi-major axis, i.e. O(¢) components of &y,
which we continue to neglect. Further, replacing »” would have no effect on the form of the long-
periodic perturbation, AM, which depends only on the choice of k.

However, two things are worth doing in connection with the secular variation. First, it is
desirable to identify the 7 which accounts for M completely, i.e. to evaluate £,, (necessarily
truncated, for the reason given in the last paragraph), and hence /i, (as defined in §7.8) in the
expression required for Kepler’s third law, such that 172 (rather than U,, which was the aim in
§ 7.9) vanishes. Secondly, it is of interest to replace n’ by the unbiased 7 of Berger & Walch (1977),
by working only to O( K%¢) again (for the same reason); the reward for this exercise is an overall
check between Merson (1966), Berger & Walch (1977) and the particular formula, (204), for £,,
in §7.1. (The starting point for an untruncated check would be a derivation of the complete
second-order perturbation in osculating semi-major axis, the simplest such derivation being by
the ‘special method’ of §7.1.)

_To make M, vanish, without going through the process of generalizing (346), we go back to
U,, as given by (274), and @, which can be derived from (336). Then subtraction gives

M, = Joa{(72 — 188F+ 12172) — 6(2 — 37) (4k, + 3k,) — 36k, /(1 —F) + 24k, }.  (347)

Taking our standard values of £, and £;, and with £, truncated from (180), we get
My = —307{ (8 +5f) — 24k, }. (348)
k

For this to vanish, clearly
o = 22.f (8 +5f). (349)

Using (349), we can easily derive the expression for /i, required to extend the first-order
modified version of Kepler’s third law, in preferred form (for untruncated analysis) as given by
43-3
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(182), to second order. We start with the general formula for /i, given by (261). Substituting % for

k, and £# for £, we get

o = F(5F% + 882) — 3k, — 2 (350)

2n*

Then with the preferred £,,, given by (211), and the expression for £,, just derived, i.e. (349),
il

fig = =4S (4=9). (351)

This is a truncated result, but it is effectively untruncated in view of the equivalence of an 0(¢)

we get

component of i, to an O( K2¢) constant term in @ that has been remarked.

We now undertake the exercise of replacing »’ in (346) by the unbiased 7 of Berger & Walch
(1977), to arrive at the indicated ‘overall check’ from the value of A?z that results. Now the
values of k,,, appropriate to n’ and 7 (the 7 of Berger & Walch will be understood in what follows)
can be derived from the values of £, and £,, associated with the corresponding «’ and &, respec-
tively, on taking 7, and I, as zero in both cases. Thus (254) gives &, = k, and then (261) gives

Fon = 5 (572 + 10k; — 8ky,). (352)
For n” (such thatn'%a’3 = u) we have £, given by (179) and k,, given, to O(¢), by (204). This leads
to what we may designate £y, (n), an expression for which has already been given —itis (281) with
a general £;, or (282) when £; = 1. For 7 (which satisfies 72a® = u), on the other hand, both £, and
ksq are O(€2) so that, to O(e), ky, (%) is 13 2.
But the two values of &,, are defined such that
{1 —§ Kk, (n) + K"y, (n')}
and {1 — 3 Kk, (7) + KZ%,,(7)}
are identical, to 0(¢), since they represent the same mean value of the osculating mean motion, 7.
We make the identification, taking £, to be 0, not 1, in (281), since it is O(¢?) in (195). Also,
ky(n') = %k, to O(¢), and k,(77) = 0, to O(&), so
n' =7+ Kn'h+ & K2%i(40 — 487 + 30f2). (353)
We must replace K'n’ by K in the first-order term of this relation, but in fact
K'n' = Ka(1+%Kh) + O( K%?),
since, to 0(¢), K’ = K(1+4Kk) and n' = (1 + K#k). Thus we finally get
n' = i+ Knh+2K2i(152 — 384f + 282f2) + 0(&2). (354)
On combining the K2 terms in (346) and (354), we see that, residual to 7 (unbiased) and the
first-order term Knk, dM/d¢ contains the secular component
2 K2i(144 — 3761+ 287/2),

and this is the result that was required, since it is in agreement with line 30 of page 110 of Berger
& Walch (1977). It does not tally with the fourth formula of page B-53 of Kinoshita (1977), but 1t
has already been remarked (in § 7.10) that an apparent error in Kinoshita’s second-order M can
be resolved by (effective) allowance for a non-zero £,,,.

We now return to (346), for the long-periodic perturbation in M. It follows at once that the
general expression for AM is given by

AM = 2 K2ag3f (14 — 15f) I + § Kq[ky + 3f sin 20]. (355)
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From (162), our ‘standard expression’ is given by the first term of (355). To obtain the appro-
priate expression to check against Berger & Walch (1977), however, we require the £, given by
(198), and this leads to

AM = 3y K2f{32(13 — 157) — 8082(7 — 8F) + 3¢4(32 — 357) + 0(2%)} L. (356)

Expressed as an apparent first-order perturbation, as usual, and with K then replaced by
Kg4(1—¢é2)-2, (356) gives
Kg%sin 2w

5841457 (32113~ 157) + 1622(17 — _20f) T 24(224 - 2657) + 0(29)},

and this conforms with lines 27 and 28 of page 112 of Berger & Walch (1977), ifitis observed that
lines 27-30 of their paper all contain an unnecessary factor, 4 — 5f, that may be divided out.

10. CONGCLUDING REMARKS

The introduction to this paper referred to the difficulty, in much of the existing literature, in
picking out the main results from a mass of mathematics. To avoid the same difficulty here,
therefore, a summary will be given of the main results, referenced by equation number.

Equations (84)—(88) and (91) express the first-order e-independent perturbations in orbital
elements due to the potential Uk (expressed by (72)) associated with harmonic coefficients C,,,
and S, through equation (33). The perturbations specified by (88) and (91), namely & and 8L,
are related to perturbations in standard elements, » and M, by (8) and (9).

Correspondingly general expressions for perturbations in a system of cylindrical coordinates,
based on the mean orbital plane, take the compact form indicated by (92)-(94). Combined such
perturbations, namely &', 64" and &¢, are incorporated in the algorithm for satellite position
(%,y,2) from mean elements at epoch as follows: secular and long-periodic perturbations are
applied to each mean element, after (44); 7and @ are obtained from (45)—(48) and (18), at which
point incorporation of 87" and 8« gives " and u’, ¢ being simply &¢; then (54) gives x, y and z.
(Note: general expressions for long-periodic perturbations were given by Gooding (1966) and
Merson (1966), and are omitted from the present paper.)

Untruncated first-order secular perturbations associated with the particular zonal harmonic
J, are given by (126)—(132), with K, f, # and ¢ given by (124), (14), (15) and (17), respectively,
and short-periodic perturbations by (138)—(146). The untruncated expressions fcr perturbations
in the cylindrical coordinates are (with the factor K omitted, after the notation of (147)) given by
(163), (168) and (171); the corresponding truncated expressions (to cover J,e terms but not J,e?
terms) are (172)—(174). The compactness of these expressions (in comparison with evaluation of
the general (92)—(94)) is due to a preferred choice of values for the arbitrary k-constants that
appear in (138)—(146), namely the choice given by (160), (161), (170), (166), (167) and (162)
for a, e, ¢, 2, w and M respectively. The &’s that implicitly apply to other sets of mean orbital
elements in common use are as follows: for Kozai’s elements, k,, £, and £, are given by (183), (192)
and (193), the others being as ‘ preferred’; for Brouwer’s elements, &, is given by (179), the others
being as for Kozai’s elements; for elements with unbiased means over time, the £’s are given by
(18,) and (194)—(198).

A seventh £, £, is used which must be equal to £, if the Kepler relation (4) is to be preserved.
To identify 7 with M, however, requires £, to be given by (180), in which case (assuming the
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preferred k,) the Kepler relation becomes (182). When working to O( Kz) only (N.B. if p > R,
Ke may be negligible even if J,¢ is not), it is more appropriate to identify 7 with U rather than 1\7,
with U given by (3), in which case %, is given by (189) and the Kepler relation by (190). It is
sometimes convenient, as indicated by Gooding (1974), to drop & when working only to O( K¢);
this is possible, so long as terms aéit (4 — 5f) sinv and é7t(4 — 5f) cos v are subtracted from (172)
and (173) respectively.

Turning to second-order perturbations due to J,, we assume first that we want untruncated
accuracy in the long-term variation of mean elements, though only e-independent terms in the
short-periodic perturbations given by (210), (217), (226), (233), (239), (250) and (273) - this
amounts to the assumption that K3t and K2 are negligible. Then mean elements at time ¢ are
given, from mean elements at epoch, by the combination of the secular perturbations in 2 and ,
specified by (327) and (337) respectively, with the long-periodic perturbations given by the first
terms of (323) and (325), for ¢ and : respectively, and (333), (343) and the first term of (355) for
Q,  and M respectively. The absence of a second-order secular perturbation in M requires, to
O( K?¢), that (after (182) and (351)) the Kepler relation between 7 and @ be

n2a® = p{1 — Kohyg5*(1—363) —$ K3 fo(4— 9f)}, (357)

wherein zero-suffices imply evaluation at epoch. The compact expressions for the perturbations
in cylindrical coordinates, to be combined with (163), (168) and (171), are (297), (315) and (321).

Over short periods of time, such that K27t can be neglected as well as K2, the second-order
secular term in £ can be truncated to 1 K% cos i(3 — 5f) £, and the second-order secular term in @
and all long-periodic terms dropped altogether. Dropping @, is dependent on a change in the
Kepler relation, of which the second-order component is derived from the vanishing of (274) with
k, given by 2/ (since All, not U as in §7.9, has to be zero); the relation becomes

#2a® = p{1 — Khg—2(1 —32%) — 3 K2f (20 — 11f)}, (358)

with zero-suffices no longer needed since ¢ and 7 are assumed constant.

Finally, if 2 < K it may be possible to truncate first-order short-periodic expressions, K¢
(but not Ké or K2) being negligible. Then we can truncate the K-term in (358) to simply K&,
and simplify other expressions correspondingly —in particular (163), (168) and (171) become
(172) - (174). There is an alternative procedure, however, more in keeping with the spirit of the
paper, since it amounts to letting 7 represent ‘mean mean draconic motion’ rather than ‘mean

2

mean anomalistic motion’, the former being more practical for a near-circular orbit. This requires
k, to be given by (189) instead of (180), the derivation of the second-order component of the
Kepler relation being as given in §7.9; then (following (190) and (278)) this relation becomes

#2a3 = p{1+ 3 K(6 —7f) + 3¢ K2 (4 — 197)}, (359)
and overall secular perturbations are represented by the formulae
0 =0,-Kicosi[1-§K(3—4/)]¢, (360)
o = o, + 1Kn(4—5f) t . (361)
and U= U,+it. (362)

The K*termin (360) comes from (227); it differs from the K2 termin (327) asa direct consequence
of the change in k,,. As already mentioned, the variation in @ may be suppressed completely, by
adding extra terms into (172) and (173) as compensation.
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Note added in proof. In assigning ‘ preferred’ values to the k-constants, in § 6.3, it appeared that
the simplest formula for ; would be (163), with £, given by (160) and the associated semi-major
axis only slightly different from that in Kozai’s paper. This is only true, however, if it is demanded
that the mean of 7{ be 0(¢), i.e. that 7 be an essentially unbiased mean. Equation (163) is
marred by the internal factor (7/p) and the simplest formula for 71 is given by using (179) for £,,
i.e. by using a’ as @. We then also need £, such that 4/ is replaced by 224 in (161), (176) and
(177), the reward being the simple expressions for both r; and «; that are inherent in (366) and
(367) below. The use of a’ makes p/7 a factor of a; (this applies to the analysis for an arbitrary
Jn), and @’ is naturally retained in the second-order analysis; this constrains k,, to be
2(5—15f+12f?), rather than as given by (211). Revised formulae for a,, i, etc. follow from
(209), (216) etc., the simplicity of (321) being preserved by taking 17 — 25f for k,,.

The effect of the changes in £, and £, on the most accurate second-order algorithm of § 10 is
that (327), (337) and (357) must be replaced by

D, = — i cos 1{4(1 —F) + &2(4 + 57)}, (363)
Wy = 557{2(64 — 1807+ 9572) + 22(56 — 36/ — 4572)} (364)

and
@ = p{l — e K*q°(8 — 87— 5/*)}, (365)

where @ = ' and the £,, associated with 7 is —54(16 — 567+ 31f2) instead of (349). (Zero
suffices have been omitted from (365), and the factor g2 has been included as it is known from
(346) that this is the untruncated relation.) The combined revisions of (163), (168), (171),
(297), (315) and (321) can now be expressed by
v = i+ LKa{(fg? cos 2ii— 2k)
— 5 K[ f2 cos 4it + 87 (6 — Tf) cos 2ir+ 4(4 — 127~ 1972)]}, (366)
u' = @+%K{f[sin 2u+ 4Zsin (i + )]+ he[32 sin 57— 96V (7,¢)]
— LKf[ fsin 4w — (23 — 26f) sin 2]} (367)
and
¢ = & Krsin 2i{¢[16 sin (@ +0) — 24 sin @ — 9¢ V (,) cos &] — 2Kf sin 3iz}. (368)

Over short periods of time such that @, can be dropped, (358) is replaced by

72 a® = p{1+LK2(14 — 43f 4 25f2)}. (369)
Finally, when 7 is defined on the basis of (362), equations (359) and (360) are replaced by
72 a3 = p{l+ K(4—5F) + {5 K2(76 — 206/ + 12572)} (370)
and
0 = 0y~ Kiicos i[1 —LK(11 —141)]t. (371)
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